本篇提出一具即時調整基因演算法的直接型適應性寬幅調變模糊控制器應用於部分未知的非線性系統,當僅有系統輸出是可量測時,其參數能有效的利用微小型基因演算法搜尋到,並於模糊正交條件下,利用寬幅調變型歸屬函數決定模糊規則,減少基因法則搜尋參數之數目。 具寬幅調變因子之模糊控制器,不僅能由基因法則調整前件部且也能調整後件部,讓搜尋的參數大大的減少,並利用李亞普諾夫穩定法則,推導出新的適應函數,做即時的調整,加速執行的時間。另外監督控制器利用寬幅調變模糊控制器設計並定義出其搜尋範圍,加快基因法則速度,使其不僅能保證穩定且更為平滑。 最後,為了能將此理論適當應用於實際系統,發展出多輸入多輸出的控制器,並推導出自走車動態模型,利用此控制器讓自走車追隨已知路徑,實驗後能有效達到路徑追隨的效果。
An observer based adaptive modulated membership fuzzy controller (OAMMFC) for uncertain nonlinear systems is proposed in this thesis. By including micro-genetic algorithm (MGA), the width of membership functions are modulated based on fuzzy orthogonal condition. The proposed fuzzy controller can online adjust not only weighting factors in the consequence part but also the membership functions in the antecedent part. Computation time is shortened to improve controller performance. Moreover, we use fitness function for online tuning the parameter vector of the fuzzy controller. The fitness function is based on stability criterion established by Lyapunov method. For meeting stability condition, a supervisory controller is implemented in a closed-loop nonlinear system to smoothen controller operation. Finally, a Multi-inputs multi-outputs controller is developed and applied on an Automatic Guided Vehicle dynamic model. Favorable results are obtained when the proposed method is applied on a path tracking experiment.