透過您的圖書館登入
IP:18.220.178.207
  • 學位論文

多輸入源之一體式降壓型多輸入轉換器

Integrated Buck Type of MICs for Multiple Input Sources

指導教授 : 賴炎生
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要研製應用於內燃機車輛之降壓型多輸入轉換器。能量來源包含太陽能板、煞車時的再生能源和熱電發電。由於這三種能源有不同的額定功率,因此,本論文提出功率分配控制技術。當三個輸入源同時導入多輸入轉換器,功率分配控制方法能有效地將輸入源進行功率分配。第二個功能是模式切換技術,系統以熱電系統為主要的能量來源,當輸出功率需求大於熱電系統規格,此時模式切換技術將煞車回充系統導入系統,且擁有功率分配之功能。 轉換器的規格包含:輸入電壓範圍由16伏到60伏、輸出功率為1320瓦以及輸出電壓為12伏,其中三相的控制訊號採交錯式控制,以利於減少輸出電壓漣波。經模擬與實驗結果證實,降壓型多輸入轉換器能於不同負載需求時進行功率分配。於滿載情況下,輸出電壓漣波小於1%,且滿載效率可達90.08%。其次,降壓型多輸入轉換器應用模式切換技術時,系統能有效因應負載需求導入新的輸入源,或是將輸入源切離系統。

並列摘要


The thesis will present a converter with multiple sources for energy harvest of internal combustion engine vehicle. The energy sources include solar panel, regeneration energy during braking and thermal electrical generator. Since these three energy sources have different power rating, a power distribution control method is proposed in this thesis. The proposed power distribution control method can effectively implement power distribution while three input sources operate in the MICs at the same time. The second function is mode switching method. MICs is required to use Thermo-Electrical Generator for main energy source. As output power need is more than TEG standard, mode switching method can operate MICs back to breaking recharge system, and posses power distribution function. The specifications of the converter include: input voltage ranging extends from 16 V to 60 V, output power is around 1.32 kW and output voltage is 12 V. The three-phase control signals are with interleaved control to reduce the output voltage ripple. According to the simulation and the result of experiment, MICs can implement power distribution base on different load needs. When it is full load, output voltage ripple is smaller than 1%, and full load efficiency can achieve 90.08%. Besides, when MICs implement switching-mode technology, the system can effectively operate extra input source according to load needs, or part the input source from system.

參考文獻


[2]M. Yilmaz ad P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., Vol. 28, No.5, pp. 2151-2169, May 2013.
[3]Z. Chen, C. C. Mi, J. Xu, X. Gong, and C. You, “Energy Management for a Power-Split Plug-in Hybrid Electric Vehicle Based on Dynamic Programming and Neural Networks,” IEEE Trans. on Vehicular Technology, Vol. 63, Issue:4, pp. 1567-1580, May 2014.
[4]J. P. Torreglosa, P. Garcia, L. M. Fernandez, and F. Jurado, “Predictive Control for the Energy Management of a Fuel-Cell–Battery–Supercapacitor Tramway,” IEEE Trans. on Industrial Informatics, Vol. 10, Issue:1, pp. 276-285, Feb. 2014.
[5]Y. S. Lai, W. T. Lee, Y. K. Lin and J. F. Tsai, “Integrated inverter/converter circuit and control technique of motor drives with dual mode control for EV/HEV applications, ”accepted by IEEE Trans. on Power Electronics, 2013.
[9]李維庭,「應用於電動車及混合電動車之雙模式整合電路與控制技術的研製」,碩士學位論文,國立台北科技大學電機工程系,民國一百零二年七月。

延伸閱讀