透過您的圖書館登入
IP:13.59.61.119
  • 學位論文

利用化學反應相分離法製備高分子電解質薄膜:反應組成及溫度之影響

Preparation of Polymer Electrolyte Membranes via Chemically Induced Phase Separation: Properties Dependent on Reaction Composition and Temperature

指導教授 : 鄭國忠
共同指導教授 : 莊祖煌

摘要


本研究利用環氧樹脂和胺類硬化劑反應,以製備化學誘發相分離法製備具有孔洞互穿結構的環氧樹脂薄膜,實驗中以雙酚A型的環氧樹脂(D.E.R.331)溶入二異丁酮(diisobutyl ketone, DIBK)中,利用2,4,6-三(二甲胺基甲基)苯酚(2,4,6-tris-(dimethylaminomethyl)phenol, DMP-30)作為硬化劑,於硬化反應的過程中,由於高分子的分子量上升使得混合熵( )降低誘發高分子與溶劑溶解度下降而相分離,製備出多孔性高分子薄膜。探討不同硬化劑比例、不同硬化反應溫度、添加三官能基環氧樹脂Trimethylolpropane triglycidyl ether (TMPTGE)、聚氧化乙烯分枝狀高分子BP6。 不同硬化劑含量A系列薄膜孔洞形態內部孔徑尺寸最大為2.33μm、最小為0.64μm,孔隙度最大為0.62,沉浸以1.0M LiClO4之ethylene carbonate (EC)/ propylene carbonate (PC)/ diethyl carbonate (DEC)體積比為1:2:2,電解液吸附程度最好為62.1%,導電度最佳為7.89x10-4 S/cm(20oC);不同硬化反應溫度T系列薄膜孔洞形態內部孔徑尺寸最大為1.38μm、最小為0.25μm,孔隙度最大為0.54,電解液吸附程度最好為59.3%,導電度最佳為5.13x10-4 S/cm(20oC) ;添加三官能基環氧樹脂TE系列薄膜孔洞形態內部孔徑尺寸最大為1.82μm、最小為1.26μm,孔隙度最大為0.65,電解液吸附程度最好為65.5%,導電度最佳為1.48 x10-3 S/cm(20oC);添加分枝狀BP6之B系列薄膜孔洞形態,B(0)與B(0.1)內部孔洞形態為封閉孔洞,孔徑尺寸為孔洞2μm,添加至B(0.15)至B(0.6)則為互穿式孔洞,其以顆粒尺寸為主,最大顆粒尺寸為11.42μm、最小為4.92μm,孔隙度最好為0.63,電解液吸附程度最佳為61.5%,導電度最佳為1.8x10-3 S/cm(20oC)。 製備薄膜熱性質分析得知,A、T系列多孔性環氧樹脂材料最大裂解溫度高於420 ℃,表示製備後的多孔性環氧樹脂材料具有高熱穩定性的優點。機械性質分析中,多孔性環氧樹脂鋰電解質隔離膜之壓縮模數為0.1至0.7GPa。在室溫最佳鋰離子導電度為1.80x10-3S/cm,在 70 oC可達7.76x10-3 S/cm,預期可以應用在鋰電池之隔離膜等用途。

並列摘要


Porous epoxy membranes were prepared from a commercial epoxy resin, D.E.R. 331 cured with a tertiary amine, 2,4,6-tris-(dimethylaminomethyl) phenol (DMP-30) in the diisobutyl ketone (DIBK). The epoxy membranes with interconnected pores were formed via chemically induced phase separation process, and the removal of DIBK. The morphologies of the epoxy membranes could be changed by the curing temperature, the ratio of curing agent, or the composition of monomers and additive. The glass transition temperatures of the epoxy membranes determined by differential scanning calorimetry (DSC) were higher than 70oC. The thermal stability of the membrane was further investigated by thermal gravimetry analysis (TGA). It was found that the temperatures at 5% weight loss were higher than 330oC. The epoxy membranes were further impregnated with lithium perchlorate in ethylene carbonate (EC)/propylene carbonate (PC)/diethyl carbonate (DEC) mixture. The uptakes of lithium ion solution into the membranes were about 2~65%, which was majorly dependent on the porosity of the membrane. The ionic conductivity of the epoxy membranes with lithium ion solution could reach 1.8x10-3 and 7.8x10-3S/cm at 20 and 70oC, respectively.

參考文獻


[22] 范舒晴, "聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究," 博士學位, 中原大學, 桃園縣, 2004.
[2] S. Sotiropoulou, V. Vamvakaki, and N. A. Chaniotakis, "Stabilization of enzymes in nanoporous materials for biosensor applications," Biosensors and Bioelectronics, vol. 20, pp. 1674-1679, 2005.
[3] P. Le-Clech, V. Chen, and T. A. G. Fane, "Fouling in membrane bioreactors used in wastewater treatment," Journal of Membrane Science, vol. 284, pp. 17-53, 2006.
[4] Y. Xu, B. K. Zhu, and Y. Y. Xu, "Pilot test of vacuum membrane distillation for seawater desalination on a ship," Desalination, vol. 189, pp. 165-169, 2006.
[5] Z. Wang, Z. Wu, X. Yin, and L. Tian, "Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization," Journal of Membrane Science, vol. 325, pp. 238-244, 2008.

延伸閱讀