透過您的圖書館登入
IP:18.219.93.1
  • 學位論文

以黑色矩陣光阻修補液晶顯示器偏光片技術之研究

A Study on the Repair Polarizer Technology by Resin BM in TFT-LCD Industry

指導教授 : 蔡德華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在薄膜電晶體液晶顯示器(TFT-LCD)產業,目前正以壓低單片生產成本之目標邁進,因此如何從既有製程中找出可能降低成本支出之環節,儼然成為各公司努力方向之一。TFT-LCD主要製程: Array & CF→Cell→Module,Cell的組成為TFT + CF上下各貼一片偏光板,在貼合過程,如有異物存在於TFT或CF與偏光板間,造成製程缺陷(Function defect),經電壓測試檢驗,異物便以亮點呈現。 以往此類不良,重工方式為將偏光板撕除重貼,本實驗乃研究在不撕除偏光板情況下,以BM光阻修補偏光板,將既有亮點暗化,並使用UV固化BM光阻。經實驗結果,UV高度2 mm下,UV照度:1050 mW/cm2、照射時間:60秒不會有dent及外觀缺陷問題,且BM光阻附著性較好,此為UV固化之最佳參數。 上偏光板缺陷(Top defect)因距離背光源較下偏光板缺陷遠,恐有斷差問題,因此需先以固態雷射破壞偏光板表面,再將BM光阻塗佈至該處,並以UV固化,讓上偏光板缺陷與BM光阻距離更近,避免有斷差造成漏光,且此技術亦可降低修補後被移除之風險。 雷射能量及雷射發數對偏光片層破壞是有強相關性(成正比),以13.3”Sumika偏光板為例,經實驗結果最佳雷射參數:雷射波長266 nm,雷射能量0.35 mJ,雷射發數100 shot,可破壞至偏光板PVA層,深度約50∼60 μm。19”Display最佳雷射參數:雷射波長266 nm,雷射能量0.5 mJ,雷射發數100 shot。32”Display最佳雷射參數:雷射波長266 nm,雷射能量1 mJ,雷射發數100 shot。偏光板尺寸越大,相對的雷射能量亦須隨之增強。 不同尺寸偏光板,厚度會有些許差異,雷射能量及雷射發數亦須作調整。為了減少雷射發數,可將偏光板HC / TAC層分別以不同雷射能量處理,即針對偏光板表層HC(Hard coat,上偏光板表面防刮硬化處理),先以高雷射能量進行破壞處理,再使用較低雷射能量破壞偏光板TAC層,其目的是避免一次雷射能量過大恐傷及雷射處理區周圍的偏光板。雷射打的越深,BM光阻塗佈後的附著性會愈佳。同時將塗佈後之BM光阻以溶劑進行可靠度測試,結果並不會因擦拭而造成輕易脫落,可降低在後製程被移除之風險。針對上、下偏光板修補技術,皆以不損傷偏光板的前提下進行試驗。

並列摘要


It will be studied that how to reduce the cost of one chip in TFT-LCD industry. So, everyone work hard to reach the goal from the processes of TFT-LCD. Main processes of TFT-LCD contain Array & CF,Cell and Module. It is the composition of Cell that TFT and CF attached by polarizer. In attaching process, if particle exists between them, it will be found after voltage inspection. It is the repairing process that Remove and re-attach polarizer now. Particle issue will be a bright point. If it is over product specification, polarizer will be into the repairing process. So, I want to save materials. Resin BM is opaque. I try to repair polarizer by resin BM and use UV curing it. Bright point becomes dark after them. The best parameter of UV curing is as below after experimental results. UV height:2 mm UV illumination:1050 mW/c㎡ UV curing time:60 seconds After them, I pay attention to appearance of the polarizer, it is no problem. At the same time, High adhesive force exists between polarizer and resin BM. The distance of top defect and backlight is far than bottom defect and backlight. It may be the gap concern. So, new repairing process for top is as below: Laser treatment→INK repair by resin BM→UV curing. After them, top defect comes close to resin BM more. When using laser treatment on polarizer, laser energy is direct relative to laser shot. The best parameter of laser function is as below after experimental results. 13.3”Sumika polarizer:Laser wavelength:266 nm, laser energy:0.35 mJ, laser shot: 100 shots. PVA layer is broken by the best parameter of 13.3”Sumika polarizer. The depth is about 50~60 um. 19”Display:Laser wavelength:266 nm, laser energy:0.5 mJ, laser shot: 100 shots. 32”Display:Laser wavelength:266 nm, laser energy:1 mJ, laser shot: 100 shots. Laser energy will strengthen if polarizer size becomes bigger. Laser energy and laser shot need to change when using different polarizer. In order to reduce laser shot, HC and TAC layers can be the treatment by different laser energy. In the opposite way, TAC layer can be treated with low laser energy after high laser energy versus HC layer. If the depth of laser treatment is bigger, high adhesive force exists between polarizer and resin BM. At the same time, I clean resin BM on polarizer with surfactant. Resin BM has not come off the polarizer. All my repairing tests are based on protecting polarizer.

並列關鍵字

TFT-LCD Laser UV curing BM resist

參考文獻


4. 廣輝電子股份有限公司, 專業訓練教材:液晶顯示器原理, 2006。
9. 蔡文元, “LCM製程簡介”, 廣輝電子股份有限公司專業訓練教材, 2004。
24. 柯信名, “TFT-LCD簡介”, 廣輝電子股份有限公司專業訓練教材, 2005。
17. Ichiro Shoji, Yoichi Sato, Sunao Kurimura, Voicu Lupei, and Takunori Taira, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics” Optics Letters, Vol. 27, No. 4, 2002。
19. W. Koechner, “Solid-State Laser Engineering”, Springer Verlag, New York, 1996。

延伸閱讀