透過您的圖書館登入
IP:3.133.159.224
  • 學位論文

壓電式汲能電路於無線感測模組之應用

Piezoelectric Energy-harvesting Circuit for Wireless Sensor Modules

指導教授 : 練光祐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要目的於設計振動汲能系統,並實際應用於ZigBee無線感測模組。振動汲能系統的概念是藉由收集環境中,源自於振動的機械能轉換成電能,將其做為後續電子裝置之電源。諸多振動汲能系統因擷取能量微小,需藉由外部電源或蓄電池做為電子裝置的輔助電源,因而降低了實質應用與便利性。因壓電材料所產生出之能量微乎其微,僅約5~9mW,除耗電量微小的感測模組外,無法直接驅動一般常見的電子裝置,所以本研究選擇低功率的無線感測模組為應用目標。 本文使用Arduino LilyPad 微控制器與超級電容結合,來對於壓電材料所轉換出之能量與無線感測器之資料加以管理與控制,然而微控制器本身需要16.84mW給予驅動,所以本研究使用4片壓電材料做為電能擷取的目標。因壓電材料的特性,輸入電流為μ級安培,但最大開路電壓約數十伏特,所以微控制器前端必須藉由能量傳遞電路與直流至直流轉換器做為輸入端之控制與保護,再由微控制器啟動達到監控、節能(休眠模式)及資料傳輸處理。本系統並不需要外加電源與蓄電池,所有電力能源皆由壓電材料供給,實現了電源自給自足的目標。

並列摘要


The main purpose of this study is to design a vibratory energy-harvesting system and integrate it with a ZigBee wireless sensor module. The concept behind the vibratory energy-harvesting system is collecting mechanical vibration energy and transforming it into electrical energy, which can be used as a supplying power for any electronic device. Most of the available vibratory energy harvesters (VEHs) capture only minute amounts of energy, as a result external power supplies or battery are required as auxiliary power sources. This, thereby, reduces the practicality and convenience of VEHs. Besides the additional power consumption by the sensing modules, the energy generated by the piezoelectric material is a minimal of about 5 ~ 9mW making it inadequate for driving any general common electronic device. Therefore the goal of this study is study the application on low-power wireless sensor modules. In this study, the Arduino LilyPad microcontroller is used in conjunction with a super capacitor to manage and control both the energy converted by the piezoelectric material and the data from the wireless sensor. However, this study uses four pieces of piezoelectric material for the 16.84 mW required by the microcontroller alone . The differences between input current of the piezoelectric material (on the μ level) and the maximum open-circuit voltage (multiples of 10V) makes it necessary to place energy storage, transmission circuit and a DC-DC converter at the front-end of the microcontroller for the control and protection of the input node. the microcontroller, control, energy saving (sleep mode) and data transmission process are achieved. As the system does not require any external power and batteries due to the adequate amount of power provided by the piezoelectric material, the objective of power self-sufficiency is achieved.

參考文獻


[6] R. Amirtharajah, S. Meninger, J. O. Mur-Miranda, A. P. Chandrakasan, J. H. Lang, “A micropower programmable DSP powered using a MEMS-based vibration-to-electric energy converter,” IEEE Trans. on Solid State Circuits,Vol. 39,No. 2, 2000, pp. 362-363.
[7] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green , “Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices,” Proceedings of the IEEE, Vol. 96, No. 9, September 2008.
[9] E. O. Torres and G. A. Rincon-Mora, “Energy-Harvesting System-in-Package Microsystem,” Journal of Energy Engineering, vol. 134, December 2008, pp. 121-129.
[10] S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Institute Of Physics Publishing, Smart Mater. Struct. 13, June 2004, pp. 1131-1142.
[11] S. Priya, “Advances in energy harvesting using low profile piezoelectric transducers,” Journal of Electroceramics, vol. 19, Sep. 2007, pp. 165-182.

延伸閱讀