透過您的圖書館登入
IP:3.139.79.59
  • 學位論文

利用水熱法控制次微米四氧化三鐵結構與形貌之研究

Control of structure and morphology of Fe3O4 submicroparticles by hydrothermal method

指導教授 : 陳志恆

摘要


近幾年來,在合成材料中控制形貌和大小的研究引起相當大的關注,由於形貌和大小在材料的物性與化性扮演重要的角色。相較於四氧化三鐵奈米顆粒,次微米顆粒在磁共振影像、感測器和靶向給藥等領域有極大的潛力。四氧化三鐵常見的化學合成方式有熱分解法、共沉澱法、水熱法、電化學法、微乳液法和溶膠凝膠法等。本研究主要探討利用添加劑於水熱法中合成四氧化三鐵次微米結構之研究。本研究採用水熱法,以硫酸亞鐵銨為前驅物,加入環六亞甲基四胺當鹼源,並加入不同種類添加劑:PEG-6000和氟化鈉,放入壓力釜當中,以水熱法合成四氧化三鐵;經由改變反應條件,包括環六亞甲基四胺濃度、添加劑量、反應時間和反應溫度,可合成出次微米級球狀、八面體形狀的四氧化三鐵。最後探討反應條件與不同添加劑對鐵氧化物形貌的影響。結果發現,當添加劑為PEG-6000時,四氧化三鐵形貌主要為球體結構;當添加劑為氟化鈉時,四氧化三鐵形貌主要為八面體結構。不同形貌之四氧化三鐵具有不同的磁性特性。

並列摘要


Due to that morphology and size play very important roles in determining chemical and physical properties of materials, in recent years, there is increasing attentions on the development of synthesis method to control the morphology and size of particles. Comparing with Fe3O4 nanoparticle, Fe3O4 submicroparticle has potential applications in the fields of magnetic resonance imaging, sensors, targeted drug delivery and color displays. The preparation of micro Fe3O4 particle with well defined nanostructure and morphology is of particular interest of this study. The synthesis of submicro Fe3O4 particle including thermal decomposition, co-precipitation, hydrothermal, electrochemical method, micro-emulsion method and sol-gel methods. In this study, we focused on the hydrothermal method to control the morphology and size of particles. The effect of additives, such as soft template PEG-6000 and NaF salt, on the synthesis of Fe3O4 micro-structure were investigated. It was demonstrated that two kinds of shapes of Fe3O4, including micro-spheres and micro-octahedron, can be prepared by adjusting the hexamethylenetetramine concentration, the amount of additive, reaction time and reaction temperature. The morphology of Fe3O4 were spheres-like with PEG-6000. The morphology of Fe3O4 were octahedron-like with sodium fluoride.

並列關鍵字

Fe3O4 PEG-6000 sodium fluoride hydrothermal method

參考文獻


2. K.H. Choi, et al., “A Facile Fabrication of Fe3O4/ZnO Core-Shell Submicron Particels with Controlled Size”, IEEE Trans. Magn. 47(10), 2011, pp. 3369-3372.
3. S. Wang, et al., “Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance”, J. Power Sour. 195, 2010, pp. 5379-5381.
4. B. Hamm, et al., “Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide”, J. Magn. Reson. Imaging, 4(5), 1994, 659-668.
5. I. Koh, et al. “Magnetic Iron Oxide Nanoparticles for Biorecognition: Evaluation of Surface Coverage and Activity”, J. Phys. Chem. B , 110, 2006, pp. 1553-1558.
6. S.K. Banerjee, et al., “Ferrimagnetic properties of magnetite, in Magnetite Biomineralization and Magnetoreception in Organisms: A New Magnetism”, edited by J. L. Kirschvink, and et. al., Plenum Publishing Corporation, 1985, pp. 17-41.

延伸閱讀