透過您的圖書館登入
IP:3.137.170.183
  • 學位論文

單壁奈米碳管與高分子烷基側鏈吸附效應及其透明導電薄膜之研究

Study of Different Alkane Side Chain Length Absorption Effect on Single Wall Carbon Nanotubes Fabricated Transparent Conducting Film

指導教授 : 蘇昭瑾 陳貴賢 林麗瓊
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


我們利用單壁奈米碳管製備透明導電薄膜,目的在於奈米碳管擁有優秀的機械強度以及導電性,經由反覆的彎曲測試後,片電阻值不會有驟降的趨勢,適用於製成光電元件的軟性基材。 由於奈米碳管因為凡得瓦爾力的關係不易均勻分散在溶液裡,我們利用導電高分子聚(3-烷基塞吩)幫助碳管在溶液裡的分散性,利用不同的側鏈長度去影響奈米碳管間的距離。利用雷射奈米粒徑暨介面電位量測儀測量使用不同側鏈長度的聚(3-烷基塞吩)來分散奈米碳管的效果,我們得到側練越長的聚(3-烷基塞吩)能得到直徑分佈較小的奈米碳管以及表面帶電量較大的結果,表示穩定分散的效果也較好。 利用超音波震盪器提升分散效果,再利用離心機把未均勻分散於溶液的碳管及無定型碳給去除,減少製成透明導電薄膜後有塊狀的情況。因為表面粗糙度過大的情況會造成光散射的問題以及製程元件後引起短路現象。我們利用超音波噴霧法的技術來製作透明導電薄膜,在出口端利用超音波霧化溶液,利用固定頻率準確控制每個液滴的大小,因此能得到較平整的透明導電薄膜。

並列摘要


Single wall carbon nanotubes are used as active material in fabricating transparent conducting film, because they have excellent mechanical strength and conductivity. Moreover, we can easily incorporate the said material into flexible substrates which in turn are suitable for optoelectronic device applications. Due to Van der Waal’s interaction between individual carbon nanotubes, they are difficult to disperse in organic solvent. In this study, we used conducting polymer (poly(3-alkylthiophene) as surfactant in aiding the dispersion of the nanotubes. We used different side chain length and various molecular weight of poly(3-alkylthiophene). By doing so, we observed that the dispersion of carbon nanotubes and the transmittance and conductance of the fabricated films vary. To differentiate the dispersion property of the carbon nanotube-polymer solutions, the zetasizer was used to obtain difference in zeta-potential and carbon nanotube diameter. From the result, we have concluded that as the alkyl side chain of P3AT gets longer, the diameter of the carbon nanotube decreases and the zeta-potential value increases. This indicates that the dispersion of the solution gets better as longer alkyl side chain is used. Furthermore, dispersion enhancement can be done when the carbon nanotube-polymer solutions were subjected under ultrasonication process and removal of amorphous carbon by centrifugation. By doing this, less aggregation can be observed after film fabrication. To coat the solution onto the substrate, we use ultrasonic spray which gives a more uniform film.

參考文獻


1.D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., 25, (1954), 676.
2.J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZsubstrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res.Appl., 7, (1999), 471.
4.C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, (1986), 183.
5.B. O’Regan, M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, (1991), 737.
6.G. Li, V. Shrotriya, J. Huang, Y. Yao, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Mater., 4, (2005), 864.

延伸閱讀