透過您的圖書館登入
IP:52.14.130.13
  • 學位論文

低溫製備奈米金-氧化鋅薄膜應用於染料敏化太陽能電池之研究

Low temperature preparation of Au/ZnO nanoparticle-based thin films and their applications to dye-sensitized solar cells

指導教授 : 余琬琴

摘要


本篇論文為在染料敏化太陽能電池氧化鋅工作電極中加入Au 奈米粒子,探討不同合成Au/ZnO方式與 Au 粒子的粒徑大小對染敏電池效率的影響。依製程 Au/ZnO 方式不同而分成兩部分:第一部分中,首先用傳統的方法- Turkevich method合成出Au奈米粒子,此方法為利用四氯金酸做為奈米金粒子之前驅物, 檸檬酸鈉作為還原劑,製備出平均粒徑16 nm 的Au奈米粒子。接著用吸附的方式使Au奈米粒子吸附在ZnO表面上,製程 Au/ZnO 粉末,進而製程電池量測效率。實驗結果顯示,加入不同奈米金水溶液的體積會影響到整體光電轉換效率的高低,在膜厚為 16 μm時,可將光電轉換效率從純 ZnO 2.19% 提升至2.73%。 第二部分,利用還原的方式,將Au 奈米粒子直接還原在ZnO表面上,探討不同Au粒子粒徑大小與ZnO浸泡於四氯金酸水溶液前驅物下時間對光電轉換效率的影響。在Au粒子粒徑5 nm ,浸泡時間30分鐘之下,膜厚21 μm時,短路電流密度 (short-circuit current density ) 可從4.71 mA/cm2提升至 7.39 mA/cm2,光電轉換效率從2.19 % 提升至3.49 %。推究其原因可能是Au 奈米粒子產生的表面電漿共振效應會使染敏電池中工作電極光吸收範圍擴大,使得光子轉換成電子的效率提升,進而達到提升效率的目的。

並列摘要


Working electrodes for dye-sensitized solar cells (DSSCs) were fabricated with commercial ZnO nanoparticles using low-temperature process. The sensitizing dye used here was N719. The effects of ZnO film thickness and gold nanosphere incorporation on solar cell efficiency were investigated. In the first part, The gold nanospheres were synthesized by classical citrate reduction method (Turkevich method) ,which is reducing of hydrogen tetrachloroaurate (HAuCl4) by sodium citrate, and had an average size of 16 nm. We use the way to nanospheres adsorption on ZnO surface. The results show that the power conversion efficiency could be enhanced by the incorporation of gold nanospheres with proper volume in the ZnO-based photoelectrode. At a film thickness of 16 μm, the addition of gold nanospheres boosted the conversion efficiency from 2.19% to 2.73%. The second part, We use another method to gold nanospheres direct reduction on ZnO. This study enhanced power conversion efficiency with 5 nm size of gold nanospheres and time immersing hydrogen tetrachloroaurate precursors from 2.19% to 3.49% at film thickness of 21 μm. The observed increase in conversion efficiency could be attributed mainly to a significant rise in short-circuit current density (Jsc), which was probably the result of enhanced optical absorption in visible range produced by the surface plasmom resonance of gold nanospheres.

參考文獻


6. M. P. Faraday, Trans. R. Soc. London, 1857, 147.
9. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables” , Prog. Photovolt: Res. Appl., 19, 2011, 84-92.
12. F. Lurd, R. Livingston, ” The Quantum Yields of Some Dye-Sensitized Photooxidation.” J. Phys. Chem., 44, 1940, 865
13. D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, P. Radlick,”Evidence for the Participation of 1Σg + 1Δg Oxygen in Dye-Sensitized Photooxygenation Reactions”, J. Am. Chem. Soc., 89, 1967, 5456.
14. H. Tsubomura, M. Matsumarm, Nomuray, T. Amamiya, “Dye sensitized Zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 261, 1976, 402.

延伸閱讀