透過您的圖書館登入
IP:18.119.104.238
  • 學位論文

同步監控與改善呼吸位移之補償裝置 驗證

The verification of improving the compensation accuracy of respiratory motion using simultaneously monitoring device

指導教授 : 莊賀喬
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究藉由自行研發之呼吸位移補償系統搭配超音波儀輔助監測補償效果與利用螢光透視儀來驗證補償效果的準確性。主要是因為超音波具有無放射線傷害的特性,因此可以取代舊式螢光透視,以減輕患者受到不必要的放射劑量傷害。研究中也利用呼吸模擬系統產生模擬人體呼吸時的腹部起伏,再利用應變規來擷取模擬的呼吸訊號,藉由超音波探測目標的距離變化,調整呼吸訊號的增益値,使補償訊號振幅接近目標運動的位移大小。並以呼吸補償系統進行呼吸位移補償,藉由螢光透視影像來驗證補償效果。結果顯示,當超音波輔助呼吸補償系統進行正弦波與人體呼吸訊號震幅為5、10、15mm時,呼吸補償系統補償誤差可縮小到0.81mm~2.92mm,因此藉由超音波輔助下其呼吸位移之補償率最高可改善92.48%。另外,由臨床試驗進行擷取2位病患呼吸訊號,同時以超音波觀察病患體內橫膈膜位移,並啟動呼吸補償系統以抵銷橫膈膜位移,其補償率可達61.3%~64.6%,最後並透過螢光透視影像分析來驗證上述的補償率。綜合以上驗證結果可顯示本研究的呼吸運動補償系統結合非侵入式的超音波系統輔助監測補償率對於抵銷因呼吸而造成的器官位移上有所貢獻。

並列摘要


This study uses a respiratory compensating system (RCS) coupled with a ultrasound transducer to monitor the respiratory compensation effect. Normally, respiratory compensation accuracy is verified by a fluoroscopy and in this study the ultrasound transducer is used to replace it as a monitor to reduce the unnecessary radiation dose. The study uses a simulated respiratory system to simulate the abdomen displacements and a strain gauge to capture the respiratory signals. The movement of the target is observed by the ultrasound transducer while adjusting the respiratory signal gain in order to track the target. Finally, the target movement was verified by a fluoroscopy images when the respiratory signal is input from the Sine wave and human respiratory data with an amplitude of 5, 10 and 15 mm. The compensating error can be minimized to 0.81~2.92mm by the RCS. Moreover, with the assistance of a ultrasound transducer the compensating rate of the target can be improved up to 92.48%. Finally, two patients’ respiratory signals are captured to activate the RCS to offset the displacements of targets while using the ultrasound transducer to observe their diaphragm or other targets. The results suggested that about 61.3~64.6% organ displacement can be offset in our system. Therefore, this study proves that our RCS can contribute to the compensation of organ displacement with respiratory motion.

參考文獻


[1] J.D. Christensen, A.V. Kirichenko, and O. Gayou, “Treatment Dose Verification in Liver SBRT Using a Deformable Respiratory Motion Model and Treatment Beam's-Eye-View Fluoroscopy With Tumor Tracking, “International Journal of Radiation Oncology Biology Physics, vol. 84, no. 3, p. S202, 2012.
[2] H. Shirato, M. Oita, K. Fujita, Y. Watanabe, and K. Miyasaka, “Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 1, p. 335-341, 2004.
[3] A. Uchino, K. Hasuo, S. Matsumoto, and K. Masuda, “Cerebral magnetic resonance imaging of liver cirrhosis patients,” Clinical Imaging, vol. 18, no. 2, p. 123-130, 1994.
[4] T. Ichikawa, and T. Araki, “Fast magnetic resonance imaging of liver,” European Journal of Radiology, vol. 29, no. 3, p. 186-210, 1999.
[5] A. Uchino, K. Hasuo, S. Matsumoto, and K. Masuda, “Cerebral magnetic resonance imaging of liver cirrhosis patients,” Clinical Imaging, vol. 18, no. 2, p. 123-130, 1994.

延伸閱讀