透過您的圖書館登入
IP:3.145.50.206
  • 學位論文

使用磁滯控制與效率增強技術之快速暫態響應高效率電荷幫浦升壓轉換器

A Fast-Transient-Response High-Efficiency Charge-Pump Boost Converter With Hysteresis Control and Efficiency Enhancement Techniques

指導教授 : 陳建中 黃育賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


電荷幫浦升壓轉換器與傳統升壓轉換器不同,對於負載的變化,電荷幫浦升壓轉換器具有快速的暫態響應。此外,輸出電容的電流應力也比傳統升壓來的小。第三章提出一個使用遲滯控制技術的快速暫態響應電荷幫浦升壓轉換器。為了改善暫態響應,此設計選擇遲滯控制。晶片使用TSMC 0.35-μm 2P4M CMOS 3.3/5V製程,晶片面積為1309μm × 1496μm (1.96mm2)。量測結果顯示暫態響應為4μs。當輸出為3.3V時,輸出可從3.6V升壓至5.1V,負載電流範圍為0-200mA。當輸出為3.6V且負載電流為60mA時,有93.2%的高效率。為了進一步地改善輕載效率。第四章提出使用效率增強技術之高效率電荷幫浦升壓轉換器。晶片使用TSMC 0.35-μm 2P4M CMOS 3.3/5V製程,晶片面積為1499μm × 1496μm (2.25mm2)。當輸出為3.3V時,輸出可從3.6V升壓至5.1V,負載電流範圍為0-200mA。量測結果顯示當輸出為3.6V且負載電流為80mA時,有93.8%的高效率。在輸出負載為10mA時,最高可提升10%的效率;而暫態響應為3μs。

並列摘要


Unlike the conventional boost converter, the charge-pump boost converter has fast load transient response. Besides, the current stress on the output capacitor is smaller than conventional boost converter. A fast-transient-response charge-pump boost converter using hysteresis controlled technique is presented in Chapter 3. In order to improve the transient response, hysteretic controlled technique is chosen. This converter was fabricated with a 0.35-μm 2P4M process. The chip area is 1.96mm2. The measured transient response is 4μs. Furthermore, it achieves the peak efficiency of 93.2%. In order to further improve the light-load efficiency, A high-efficiency charge-pump boost converter using efficiency enhancement techniques is presented in Chapter 4. This converter was fabricated with a 0.35-μm 2P4M CMOS process. The chip area is 2.25mm2. Experimental results demonstrate that efficiency of 93.8% is achieved. The maximum increment of light-load efficiency is 10%. The measured transient response is 3μs.

參考文獻


[1] J.-J. Chen, F.-C. Yang, and C.-C. Chen, “A new monolithic fast-response buck converter using spike-reduction current-sensing circuits,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1101–1111, Mar. 2008.
[2] J.-J. Chen, M.-X. Lu, T.-H. Wu, and Y.-S. Hwang, “Sub-1-V fast-response hysteresis-controlled CMOS buck converter using adaptive ramp techniques,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 21, no. 9, pp. 1608–1618, Sep. 2013.
[3] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[4] E. N. Y. Ho and P. K. T. Mok, “Wide-loading-range fully integrated LDR with a power-supply ripple injection filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 6, pp. 356–360, Jun. 2012.
[5] X. Jing, P. K. T. Mok, and M. C. Lee, “A wide-load-range constant-charge-auto-hopping control single-inductor-dual-output boost regulator with minimized cross-regulation,” IEEE J. Solid-State Circuits, vol.46, no.10, pp.2350–2362, Oct. 2011.

延伸閱讀