本論文係利用機器視覺(Machine Vision)與二維小波轉換(Two-Dimensional Wavelet Transform;2-D WT)檢測晶圓之表面可見瑕疵,如:刮痕、微粒、污染及墨點,本論文以晶圓之1/20晶粒次區域影像為待測影像,先將晶粒次區域影像經平滑化與Sobel邊緣化處理後,再經由二維小波轉換的多解析分解可計算出二維小波群聚能量(Wavelet Transform Modulus Sum;WTMS)與小波能量群聚比值(α)。由於晶粒表面可見瑕疵及墨點之邊緣像素點在某相鄰階層間之小波能量群聚比值與正常影像差異甚多,故藉此可判定刮痕、微粒、污染或墨點之瑕疵像素點位置,再進一步利用最適橢圓法(Best Fitting Ellipse)求出這些瑕疵素點群之幾何特徵以分類微粒及污染、刮痕與墨點。實驗結果顯示,本論文所提出之晶圓瑕疵檢測方法在特定小波基底與多解析分解之特定階數下,能有效且精確偵測出表面可見瑕疵(微粒及污染、刮痕)及墨點之瑕疵像素點位置,後續之最適橢圓法計算得出的幾何特徵(長短軸比值與面積值)亦可初步區隔微粒及污染、刮痕與墨點。本研究提出之方法使得一待測完整晶粒影像僅需比對約20000個像素點即可,故可提昇檢測速度與節省儲存空間,期能協助目前人工檢測瓶頸與自動化光學檢測設備高成本之問題。
This paper develops an automatic optical inspection (AOI) system to inspect the visual defects such as particle, contamination, and scratch and dot on wafer die by using two-dimensional wavelet transform (2-D WT) and machine vision. The potential pixels for visual defects and dot can be precisely captured by the wavelet transform modulus sum (WTMS) and across-level ratio (α) on adjacent decomposition levels. Once the potential pixels are addressed, best fitting ellipse algorithms are utilized for calculating the geometric features such as the length of major axis, the length of minor axis, and area to classify particle and contamination, scratch, and dot on wafer die. Experiment results show that the proposed method is able to precisely capture visually defective and dot pixels on a wafer die. Moreover, it is initially feasible to classify pixel candidates into particle and contamination, scratch, or dot based on best fitting ellipse algorithms. Since the number of pixels requiring inspection on a die is around 20000 pixels, the inspection can be speed up and the capacity of this stage can be increased.