透過您的圖書館登入
IP:3.133.109.30
  • 學位論文

過渡金屬觸媒在偶合反應與新型陽離子界面活性劑之設計與應用

The Design and Application of Transition-metal-catalyzed Cross-coupling Reactions and Novel Cationic Surfactants

指導教授 : 蔡福裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究方向主要分為三個單元。第一單元為設計合成帶有四級銨鹽配位基,再以與過渡金屬 (Pd、Fe) 配位形成具有催化活性的過渡金屬觸媒系統,分別應用在催化偶合反應進行 Suzuki-Miyaura reaction (Pd-catalyzed) 與碳-硫鍵之鍵結反應 (Fe-catalyzed),並且過渡金屬觸媒可在反應完畢後再使用。由於此過渡金屬觸媒系統可輕易地溶於水相,因此在催化反應系統中,僅以水做為反應所需的溶劑,並且對於觸媒再使用方面,反應後只需以簡易萃取或過濾的方式即可將在水溶液中的過渡金屬觸媒與有機物和產物分離,不僅可降低過渡金屬觸媒的花費,並且有效地減少有機溶劑的使用,以達到環境保護與節省成本等目的,符合綠色化學 (green chemistry) 的優點。 第二單元主要研究方向為合成一個新型異相觸媒,此一觸媒不僅具有良好的催化活性,也包含能被再回收利用的特性。首先利用顆粒大小為奈米尺度 (約100 nm)、表面積約 660 m2/g 與孔徑大小約 2.6 nm 且孔道分佈為蟲洞結構之孔洞材料,NS-MCM-41,作為異相觸媒擔體,稼接上鈀錯合物形成異相催化劑 NS-MCM-41-Pd,催化 aryl bromides 與 organozinc reagents 進行 Negishi reaction,並探討觸媒反應後再回收活性測試。 第三單元則利用一連串的有機合成方法,設計合成出在結構上帶有不同發光基團與可調控疏水端長度的新型陽離子螢光界面活性劑,此一系列帶有不同發光基團之界面活性劑由於含有親水性極佳的雙陽離子基團,可在水溶液中有螢光行為的表現。另一方面則設計合成可延長疏水端長度最多達 26 個碳鏈數且帶有雙陽離子的新型長碳鏈界面活性劑,並將之製備成具有孔洞特性的有機無機複合材料,使用的是成本低廉且為水溶性的矽酸鈉 (sodium silicate) 取代常用現有的有機矽源 (TEOS) 作為無機物來源,並且調控氧化矽與界面活性劑分子之間聚合速率的快慢與反應系統的 pH 值,於不同的反應溫度環境下,可控制所得到中孔洞材料之孔徑 (晶格) 大小與結構規則性,另外探討透過水熱與否對於材料整體性質的影響。

並列摘要


The dissertation comprises three subjects. In the first subject, we developed a water-soluble and air-stable catalytic system by synthesized the cationic bipyridyl ligand (containing two quaternary ammonium salts) to coordinate with the transition-metal (Pd, Fe). This cationic 2,2’-bipyridyl/palladium (II) or iron (III) catalytic system exhibits a recyclability and high activity for Suzuki-Miyaura reaction and the formation of carbon-sulfur bond in aqueous solution, respectively. After completing reaction, the residual aqueous phase after filtration or extraction could be reused for several cycles without a significant decrease in activity. This environmentally-friendly and cost-down catalytic protocol under green solvent condition and recyclable catalyst after simple manipulation can meet the goal of green chemistry. In the second subject, we synthesized the novel heterogeneous catalyst which possesses a highly catalytic activity and recyclable property. The wormhole-like MCM-41 mesoporous silica (size 100 nm) is of high surface area (660 m2/g) and pore diameter (2.6 nm), which makes this material to be a useful support for a new generation of heterogeneous catalysis. The preparation of heterogeneous catalyst (NS-MCM-41-Pd) is to modify the bipyridyl palladium complex onto the NS-MCM-41 (nano-sized MCM-41) mesoporous materials. This NS-MCM-41-Pd proves to be an efficient heterogeneous catalyst to catalyze aryl bromides with organozinc reagents for Negishi reaction. In the third suject, fluorescent surfactants with different conjugated aromatic moieties and changeable and gradually extended hydrophobic lengths were successfully synthesized by multiple synthesized manipulations. The novel cationic surfactants possess an extremely water-soluble ability ascribed to both di-cationic quaternary ammonium salts on the end of main framework. And other research is to discuss the photoluminescence (PL) behavior in aqueous solution when existence of variety of chromophores. In the other hand, mesostructured nanocomposite with complete pore-filling of surfactants is an interesting research since such hybrid materials would provide greater control over the molecular alignment and stability. Hence we synthesized mesoporous materials prepared by using surfactant as organic template (comprised cationic quaternary ammonium salts and could extended hydrophobic segment up to 26 carbon-chains) and cheap sodium silicate as silica source (instead of TEOS). By adjusting condensation rate over molar ratio of silicate and surfactant, and the pH value of reaction mixture. The phase transition in different water content was recorded, which can find to optimum synthetic condition for physical properties (maximum pore size, surface area, well mesostructure and so on). In addition, hydrothermal treatment or not was also a key parameter of the resulting material.

參考文獻


第三單元 新型陽離子界面活性劑之設計與應用
1. Sakurai, H.; Tsukuda, T.; Hirao, T. J. Org. Chem. 2002, 67, 2721.
3. Liu, L.; Zhang, Y.; Wang, Y. J. Org. Chem. 2005, 70, 6122.
5. Jiang, N.; Ragauskas, A. J. Tetrahedron Lett. 2006, 47, 197.
7. Srimani, D.; Sawoo, S.; Sarkar, A. Org. Lett. 2007, 9, 3639.

延伸閱讀