本研究由半導體廠的中央空調系統擷取監控數據;並依照設備圖建立TRNSYS模擬模型,比較量測與模擬數據結果;其設備耗電量及冰水與冷卻水溫數據誤差皆小於10%,並以此TRNSYS模型做為替代實際系統之基準線模擬模型。 依照該TRNSYS基準線模型建立冷卻水側最佳化控制模型,搭配MATLAB軟體使用動態規畫法於每筆模擬開始前;根據當下的負載、冷卻水溫、天氣資料推算以各種不同冷卻水量與散熱風量搭配的操作結果,其每筆模擬皆嘗試2500種不同控制組合,並從試算結果中找尋滿足空調負載、邊界條件之最小耗電量操作結果輸出至TRNSYS中進行最佳化控制模擬。 透過最佳化模型進行模擬控制其結果顯示,最佳化模型較基準線模型總冷卻水流量減少9.94%、總散熱風量增加5.16%、冰水主機冷卻水出水溫度平均上升0.79℃、回水溫度則平均下降0.65℃。在耗電量部分最佳化模型總耗電電量較基準線模型減少2.46%,其中以冷卻水泵的節能量最高為106.48×103 kWh,文末最後根據冷卻水塔冷卻水進水與散熱外氣的焓差來分析節能量,發現當焓差值高於75 kJ/kg時節能量較高;平均節能量達到85.64 kWh。
In this study, Measured HVAC system operation data from semiconductor plant and established TRNSYS simulation model by design chart. The relative error of simulation results and actual system operation is less than 10% and using this TRNSYS model substitute for actual HVAC system. According to TRNSYS baseline model established optimal control HVAC cooling water system model, and using MATLAB software according to air-condtioning load, cooling water temperature, weather data, calculate with various cooling water and air flow result of operation before the each simulation. Each simulation trying 2,500 different combination and Output the optimal operation result to TRNSYS. The results of study, to compare baseline model with optimal model, the optimal model cooling water flow rate is decreased of 9.94%, cooling tower air flow rate is increased of 5.16%, cooling water star temperature rose by an average of 0.79℃, cooling water return temperature dropped by an average of 0.65℃, total power consumption is reduced by 2.50%, the highest power consumption saving 383.31×106 kWh was cooling water pump. In the end, according to enthalpy difference between cooling water and outdoor air inlet cooling tower analysis power consumption saving, that when enthalpy difference was above 75 kJ/kg the power consumption saving is higher, the average energy saving of 30.83×105 kWh.