透過您的圖書館登入
IP:3.129.69.151
  • 學位論文

氮化銦基半導體薄膜新穎磁性之研究

Novel Magnetism of InN-based thin films

指導教授 : 張本秀
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究探討使用有機化學氣相沉積系統(MOCVD)成長之氮化銦基薄膜,透過鎂離子(Mg2+)與鎵離子(Ga3+)摻雜,分析影響氮化銦基薄膜磁性的機制。以X-ray繞射儀與掃描式電子顯微鏡,分析其薄膜結構與表面形貌,結果顯示其均為高品質之烏采結構單晶薄膜,以霍爾量測所得之載子濃度均約為1019cm-3,是屬於n-type的氮化物半導體;同時藉由超導量子干涉儀(SQUID)及振動樣品磁力計(VSM)量測其磁化強度以及磁滯曲線。氮化銦基半導體薄膜之場冷(FC)的磁化強度,都比零場冷(ZFC)的磁化強度大,顯示氮化銦基薄膜具有磁有序的特性;同時我們發現氮化銦鎂比氮化銦鎵有較大的磁化強度,並且有明顯磁滯曲線,表示氮化銦鎂為具有磁性之半導體材料。研究結果顯示氮化銦鎂因為電洞式摻雜(鎂離子)有利於材料中磁矩的交換交互作用因此有較大的磁矩。因此氮化銦基薄膜磁性的主要機制,可藉由Oshiyama 等人所提出的陽離子空缺引發的磁矩超交換交互作用理論模型說明之。

並列摘要


InN-based thin films , Mg-doped InN and Ga-doped InN, were grown by MOCVD and their magnetic and structural properties were characterized. The XRD analysis show that epitaxial layers are high-quality wurtzite structure. Surface morphology and vacancy defects are studied by SEM and EDX. All films studied show n-type conductivity with carrier concentrations about 1019cm-3 by the Hall measurement. Temperature-dependent magnetization and magnetic hysteresis were performed by SQUID and VSM, respectively. The result indicated that InN-based films had long range magnetic order from the zero-field cool (ZFC) and field cool (FC) measurements. Moreover, the experiments show that hole-type doping, Mg-doped InN, results in larger magnetization and magnetic hysteresis. Therefore, our detailed analysis suggests that the origin of magnetic orders in InN-based thin films is magnetic super-exchange-like couplings due to cation vacancies proposed by Oshiyama et al.

並列關鍵字

InN MOCVD catiom vacancies Ferromagnetic

參考文獻


[5] WEI-CHUN CHEN, SHOU-YI KUO, FANG-I LAI and CHIEN-NAN HSIAO, “Effect of Substrate Temperature on InN Films by UHV-Chemical Beam Epitaxy,” Journal of Science and Engineering Technology, Vol. 6, No. 1, (2010), pp. 9-13.
[1] W Walukiewicz, J W Ager III, K M Yu, Z Liliental-Weber,J Wu, S X Li, R E Jones and J D Denlinger, “Structure and electronic properties of InN and In-rich group III-nitride alloys,” J. Phys, D: Appl. Phys. 39 (2006) R83–R99.
[2] V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides,” J. Appl. Phys. 75, (1994), 7365.
[3] Hai Lu, William J. Schaff, and Lester F. Eastman, “Surface chemical modification of InN for sensor applications,” J. Appl. Phys. 96, (2004), 3577.
[4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,” Appl. Phys. Lett. 72, (1998), 2014.

延伸閱讀