透過您的圖書館登入
IP:3.143.255.240
  • 學位論文

奈米材料修飾電極的設置、特性及其在酵素型生物感測器之應用

Fabrication and Characterization of Enzymatic Biosensors based on Nanomaterial Modified Electrodes

指導教授 : 陳生明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


我們使用奈米材料修飾電極製備對生物分子具有高選擇度和偵測度,例如,葡萄糖、乙醇和雙氧水,並以catalase (CAT)、horseradish peroxidase (HRP)、glucose oxidase (GOx)和 alcohol dehydrogenase作修飾物,這些修飾物固定在多層奈米碳管並以nafion (NF)、明膠和碳酸非共價法製備。利用電化學方法合成奈米氧化釕製備在電極上作為酶來固定HRP,其它的奈米材料像是甲苯安藍也被使用在固定電極表面上的乙醇脫氫酶。因此,MWCNTs-NF-(DDAB/CAT), HRP/Chi-GAD/ RuNPs,與CAT/CACNT薄膜修飾電極使用在過氧化氫感測器上。GCNT/GOx/ GAD薄膜修飾電極被使用在葡萄糖感測器上。所以本研究利用上述HRP-GOx/ MWCNT基礎發展出一種雙酶葡萄糖電化學感測器。此外,我們使用安培計時法與伏安法來製備ADH/PLL/CACNT與ADH/TBO/NF作為乙醇感測器。我們利用非共價鍵與共價鍵等方式來固定奈米材料於修飾電極上來發展上述的生物感測器。在非共價陽離子表面活性劑的方法didodecyldim ethylammonium銨(DDAB),甲苯胺藍(TBO)和聚- L-賴氨酸氫溴酸鹽(PLL)是用來固定乙醇脫氫酶的CAT和ADH在多層納米碳管上,TBO與多層奈米碳管修飾電極通過靜電相互作用。然而對共價鍵的理論,GAD和Chi-GAD被用來當作交聯劑使用,並以共價鍵作用力固定葡萄糖氧化酵素、過氧化氫酶於GCNT與Ru奈米粒子薄膜修飾電極上。CAT、過氧化氫酶與葡萄糖氧化酵素的直接電化學反應亦被奈米材料相關文獻所報導,。而電化學、電催化反應與固定酵素的表面型態分析以及奈米材料複合薄膜在此均一一討論。為了確認固定酵素的生物相容性對傅立葉轉換紅外光譜和可見光吸收光譜分析儀進行研究。同時也對靈敏度、穩定性及真實樣品應用在生物感測器的開發進行研究。其中的電化學參數,例如表面覆蓋率(⑷)、電子轉換速率常數(ks)、靈敏性、線性偵測範圍和偵測極限從實驗結果去評估。

並列摘要


Amperometric and voltammetric enzyme based biosensors were fabricated using various nanomaterials modified electrodes for highly sensitive and selective determination of important biomolecules such as glucose, ethanol and hydrogen peroxide. Four model enzymes, catalase (CAT), horseradish peroxidase (HRP), glucose oxidase (GOx) and alcohol dehydrogenase (ADH) were used in this study. The nanomaterial matrices used for enzyme immobilization are multiwalled carbon nanotubes (MWCNTs) dispersed either in nafion (NF), gelatin or carminic acid prepared through non-covalent approaches. The electrochemically synthesized ruthenium oxide nanoparticles were also used as an enzyme immobilization matrix for HRP. Other than nanomaterials, toluidine blue (TBO) was used to immobilize ADH at the electrode surface. The three amperometric H2O2 biosensors developed are aMWCNTs-NF-(DDAB/CAT), bHRP/Chi-GAD/RuNPs, and cCAT/CACNT films, and an amperometric glucose biosensor developed is dGCNT/GOx/GAD film. In addition, amperometric and voltametric ethanol sensors based on eADH/PLL/CACNT and fADH/TBO/NF were also fabricated. To develop the above said biosensors we employed both non-covalent and covalent approaches for immobilizing enzymes at nanomaterials modified electrodes. In the non-covalent approach cationic surfactant, didodecyldimethylammonium bromide (DDAB), toluidine blue (TBO) and Poly-L-lysine hydrobromide (PLL) were used to immobilize the enzymes CAT and ADH at MWCNT, TBO and CACNT modified electrodes through electrostatic interactions. Whereas for covalent approaches, glutaraldehyde (GAD) and chitosan-glutaraldehyde (Chi-GAD) were used as cross-linking agents to covalently immobilize the enzymes GOx and HRP at GCNT and RuNPs modified electrodes, respectively. The direct electrochemistry of CAT, HRP and GOx were also reported at the nanomaterial matrices. The electrochemical, electrocatalytic behavior and surface morphology of the prepared enzyme immobilized and the nanomaterial incorporated films were investigated. To confirm the biocompatibility of the immobilized enzymes fourier transform infrared (FTIR) and UV-visible absorption spectroscopy studies were performed. The selectivity, stability and the real sample applications of the developed biosensors have also been studied. The electroanalytical parameters such as surface coverage concentration (⑷), electron transfer rate constant (ks), sensitivity, linear detection range and detection limit have also been evaluated. The fabricated CAT, HRP, GOx and ADH based biosensors showed excellent electrocatalytic response and good selectivity towards hydrogen peroxide, glucose and ethanol, respectively

參考文獻


[1] M. Pohanka, P. Skladal, J. Appl. Biomed. 6 (2008) 57.
[2] D. Grieshaber, R. MacKenzie1, J. Voros and E. Reimhult, Sensors 8 (2008) 1400.
[3] D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilson, Biosens. Bioelectron. 16 (2001) 121.
[4] N. J. Ronkainen, H. B. Halsall, W. R. Heineman, Chem. Soc. Rev., 39 (2010) 1747.
[5] J. Wang, Electroanal. 17 (2005) 7.

延伸閱讀