透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

光催化裂解水製氫奈米太陽能電池製作與效率量測

Fabrication and Efficiency Measurements of Nano Solar Cells with Photoelectrochemical Generation of Hydrogen

指導教授 : 丁振卿

摘要


本論文主要進行光催化裂解水製氫奈米太陽能電池的研製及其光電與製氫效率量測,所製作的光催化裂解水製氫奈米太陽能電池主要由 光電極、反電極與電解液三部分組成,在光電極方面是以二氧化鈦奈米粉末做成凝膠塗佈於ITO玻璃上,利用實驗室自製 燒結爐,在450℃溫度下燒結半小時;反電極使用石墨電極板;電解液使用NaOH 和水依不同濃度比例調製。本研究工作特別針對實驗用途,製作一電解液槽方便電池架設。在完成光電極及反電極 製作與電解液調配後,將這三部份封裝在電解液槽內便完成太陽能電池製作。研究中為了解大量製作光電極,自行以4支2000W石英燈及 鋁矩形架設完成一加熱爐裝置,可加溫至近千攝氏度,恆溫效果在2℃的變動內,加熱方式自上而下。在光電效率量測方面, 以自行架設的I-V量測儀進行,發現光電極面積會影響短路電流的大小,光電極面積越大則短路電流也越大,反之則越小,反電極的面積會影響開路電壓大小, 電解液的溫度則會影響輸出功率的大小,溫度越高則輸出功率越小,反之則越大。在製氫效率的量測方面,本研究工作自行完成一集氣裝置, 測得所製作光催化裂解水製氫奈米太陽能電池之製氫效率為每分鐘0.13%。

關鍵字

電解 光催化 TiO2 裂解水製氫。

並列摘要


This paper aims to develop the manufacturing technique for fabrication of the nano solar cells with photoelectrochemical generation of hydrogen (PEC Cells) as well as their photoelectric conversion and hydrogen generating efficiency. The PEC cell consists of the photoelectrode, the counter electrode, and the electrolyte. The photoelectrode is produced by coating the TiO2 nano particles layer on the ITO glass and heated at 450℃ for 30 min. The counter electrode uses the graphite plate and the electrolyte is the aqueous NaOH solution with various content ratios. The three constituents of PEC cell were built in an electrolytic cistern, which was specially finished and is convenient for building the PEC cells. A stove with 4* 2000W power quartz tubes was made for heating the photoelectrode, which can reach ca. 1000℃ and the constant temperature is with a smaller temperature deviation than 2℃. The measured results of I-V curves found that the larger the area of photoelectrode, the larger the short current. The influence of electrolytic temperature shows that the higher the electrolytic temperature, the lower the output power. A gas collector was made for hydrogen collection and received the hydrogen generating efficiency for 0.13% per minute.

參考文獻


U.S. Department of Energy, 2007, pp. 29-58.
[2] A. Z‥uttel, ”Hydrogen storage methods and materials,”Naturwissenschaften, 2004, pp.
[5] A. Steinfeld, and R. Palumbo, ”Solar thermochemical process technology,” Encyclopedia
of Physical Science & Technology, 2001, pp. 237-256.
[9] A. Fujishima, and K. Honda, ”Photolysis of water at semiconductor electrode,”Nature,

延伸閱讀