透過您的圖書館登入
IP:18.222.35.77
  • 學位論文

應用田口方法於固態氧化物燃料電池電解質電泳製程最佳化之研究

Application of Taguchi Method in the optimization of electrophoretic process for the fabrication of SOFC electrolyte film

指導教授 : 余炳盛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


固態氧化物燃料電池是一種將化學能轉換為電能的能源裝置。因其具有高能源轉換效率、運作安靜及低污染等優點,因此被認為最具發展潛力的新世代能源系統。然而因工作溫度過高使得製造成本增加,只能應用於特殊用途而尚未商業化。而要降低其工作溫度,解決辦法之一為將電解質層薄膜化。 本研究利用電泳沉積法製備固態氧化物燃料電池之電解質薄膜,在其製程上選擇四個控制因子(電壓大小、電極間距、固液比、碘添加量) ,每個因子皆為三水準,電解質薄膜目標品質設定為最小孔隙率及厚度變異。經由田口方法S/N比分析,得到目標品質一組最佳製程參數A1 B3 C3 D2,其電解質薄膜平均孔隙率為4.86%,平均厚度變異為2.71μm。

並列摘要


Solid oxide fuel cells (SOFCs) are energy conversion devices that electrochemically convert the chemical energy of a fuel into electrical energy. They have been widely accepted as promising candidates for new generation power systems due to their high energy-conversion efficiency, quiet operation and low or zero emission of pollutants. However, the development of SOFCs for efficient power generation has still failed to reach a wide-spread commercial viability due to the high operating temperature and thus results in high cost. One way to reduce the operating temperature is fabricating thin electrolyte film. This study is using electrophoretic deposition method to fabricate SOFC electrolyte film, selected the four control factors (voltage, the distance of two electrodes, solid-to-solution ratio, the amount of addition I2), each factor are the three levels, electrolyte film's quality goals are set to the smallest porosity and the smallest variation of thickness. By Taguchi method by S / N ratio analysis, can find a group of best quality goals parameter A1 B3 C3 D2, the average porosity of electrolyte film is 4.86%, the average thickness- variation of electrolyte film is 2.71μm.

參考文獻


[2] 衣寶廉編著,燃料電池-原理與應用,五南出版,2005。
[24] 盧亮宇,電漿熔射噴塗製備金屬支撐型固態氧化物燃料電池之殘留應力分析與力學性質探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2011。
[48] 陳韋安,應用電泳沉積技術於染料敏化太陽能電池與天然染料特性分析之研究,碩士論文,國立臺北科技大學製造科技研究所,臺北,2008。
[5] M. Morales, S. Pinol, M. Segarra, "Intermediate temperature single-chamber methane fed SOFC based on Gd doped ceria electrolyte and La0.5Sr0.5CoO3-δ as cathode," Journal of Power Sources, vol. 194, 2009, pp. 961-966.
[6] J. P. Liang, Q. S. Zhu, Z. H. Xie, W. L. Huang, C. Q. Hu, "Low-temperature sintering behaviors of nanosized Ce0.8Gd0.2O1.9 powder synthesized by co-precipitation combined with supercritical drying," Journal of Power Sources, vol. 194, 2009, pp. 640-645.

延伸閱讀