在積體電路設計裡,數位積體電路由於設計較為簡單、穩定,且技術較成熟,以致於數位積體電路的電路製作比類比積體電路更受歡迎。但基本上,在真實的世界裡,類比式訊號佔了非常大部份,且基於晶片面積和電路性能的考量,類比積體電路與數位積體電路同樣地重要。我們都知道電流模式的運算放大器OPA 具有大的頻寬、低功率的驅動、比電壓模式更具線性,而四端點浮接同位等流器FTFN不只擁有上述的優點,其特性可說是比OPA更佳,而混合模式(電壓、電流模式),可以讓FTFN更具有彈性,因此本論文將使用FTFN 來做為其主要的元件,使用混合模式,來實現濾波器,並且模擬在電流模式、電壓模式及轉導模式下低通LP、帶通、高通HP,及轉阻模式下BP、HP,此電路採用台灣積體電路公司零點三五微米互補式金屬氧化物半導體製程與HSPICE 模擬軟體,用四端點浮接同位等流器為主動元件,驗證濾波器電路。
Using digital CMOS circuits to design CMOS circuits is more simple, more stable and more mature in technique. In this way, the execution of digital CMOS circuits is more and more welcomed than that of analog CMOS circuits. In fact, basically, analog CMOS circuits shares the same space with digital CMOS circuits for the following reasons: analog which takes the most important role; the chip area; and the performance of circuits. The OPA of current-mode has advantages, such as larger bandwidth, lower power consumption and much more linearity compared with voltage-mode…etc. The advantages of FTFN contain all the advantages of OPA and even better than current mode’s OPA. Under mixed-modes (voltage and current modes), FTFN has much more flexibility. Accordingly, the thesis is based on FTFN to design filter and simulate in cirrent, voltage,transadmittance modes which includes LP、BP、HP and transimpedance mode which includes BP and HP. The circuits are implemented using TSMC 0.35μm CMOS process and using FTFN to simulate filter in HSPICE.