透過您的圖書館登入
IP:3.145.156.250
  • 學位論文

太陽能電池的光電量測技術開發

Developing the Photoelectric Measuring Techniques of the Solar Cells

指導教授 : 丁振卿
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要對實驗室所自行開發的染料敏化奈米太陽能電池DSSC及商用非晶矽太陽能電池進行光電量測技術開發與量測,自行架設太陽能電池之光電效率量測儀,針對自製量測儀之光源輸出光譜、溫度控制及輸出功率誤差等進行探討, 與太陽光比較之光譜致合度以氙氣燈在800nm以內之光強皆在ASTM標準之內,複金屬燈與螢光燈在450-500nm波段超過標準之光強,在700-900nm波段的光則較弱。添加染料為DSSC拓展吸收光譜並提高整體效率的方法,本研究自行架設一單頻光掃描光譜分析儀,以單頻光照射的方式分析太陽能電池之吸收光譜,分析太陽能電池在單頻光照射下之光電轉換效率Incident Photo to Charge Carrier Generation Efficiency (IPCE)關係,由實驗結果得知,未加入染料之DSSC在光波長短於400nm之IPCE值為6.4%,加入染料後不但紫外光區之IPCE有提升,太陽能電池之吸收光譜擴展至500nm左右,部份染料並有吸收光譜紅移(Red Shift)的現象。整體而言,DSSC在偏紅外光區無法將電子激發逸出,而商用非晶矽太陽能電池吸收光譜則在600nm有最佳IPCE值約10.4%。另外,實驗室自行開發噴霧鍍膜技術,自製DSSC之光電極TiO2薄膜用噴霧法製作,本研究為探討噴霧厚度對DSSC輸出效率影響,自行架設一透光率量測儀與麥克森干涉儀進行光電極之厚度量測分析。結果顯示,使用噴霧法製作光電極TiO2薄膜在透光率68%時之光電轉換效率約為0.17%,使用Alpha-Step薄膜厚度輪廓測定儀發現噴霧製程之光電極TiO2薄膜表面粗糙度較高, 其厚度平均為3.487μm。

並列摘要


The research focused on developing photoelectric measuring techniques and measured home-made dye-sensitized nano solar cell (DSSC) as well as commercial Si based solar cell. The home-made measuring instrument of photoelectric conversion efficiency discussed the influnce of light spectrum, temperature control, and error of output power. Spectrum of the Xe-lamp smaller than 800nm agrees to the sun in terms of the ASTM standard. Irradiance of the metal halide and fluorescent lamp are over at 450-500nm and less at 700-900nm. This paper self built a scanning spectrometer using filtering method for analysis of absorption spectrum and measured the incident photo to charge carrier generation efficiency (IPCE). Adding dye in TiO2 layer can expand the absorption spectrum of DSSCs. The results show that TiO2 alone absorbs wavelength shorter then 400nm of light and IPCE value ca. 6.4%. Adding dye in DSSC, the absorption spectrum is expanded to 500nm. The IPCE value in the ultraviolet region also increased. Some dyes cause red-shift of absorption spectrum. In general, DSSC can not be excitated in infrared light field. The commercial Si based solar cell has good IPCE ca.10.4% at 600nm. Moreover, this work used spraying technique for TiO2 layer coating, The influence of transmittance and thickness were also discussed, and obtained the best photoelectric conversion efficiency ca. 0.17% at 68% transmittance. The Alpha-Step profilometer determined the thickness of TiO2 layer ca. 3.487μm at 68% transmittance.

參考文獻


17. 徐英展、林建村,「染料敏化太陽能電池之染料設計與發展」,
1. C. B. Hatfield, "Oil back on the global agenda", Nature, vol. 387, 1997, pp. 121.
3. D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", Journal of Applied Physics, vol. 25, 1954, pp. 676-677.
8. W. E. Spear and P. G. Le Comber, "Substitutional doping of amorphous silicon", Solid State Communications, vol. 17, 1975, pp. 1193-1196.
9. R. Ruther, G. Kleiss, and K. Reiche, "Spectral effects on amorphous silicon solar module fill factors", Solar Energy Materials and Solar Cells, vol. 71, 2002, pp. 375-385.

延伸閱讀