本文之研究主題為分別將過渡金屬離子(Mn2+與Cd2+)與四種配基,1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpd)、1,2-bis(4-pyridyl)ethene (bpe)、1,2-bis(4-pyridyl)ethane (dpe)及KNCS,利用傳統溶液合成法來合成具金屬有機骨架(Metal-organic frameworks MOFs)的混配基金屬配位聚合物。並且利用紅外線光譜儀(Infrared Spectrometer IR)、元素分析儀(Elemental Analyzer EA)與X光單晶繞射儀(X-Ray Single Crystal Diffractometer)鑑定化合物的組成與結構型態,並利用熱重分析儀(Thermal Gravimetric Analysis TGA)來研究其熱穩定性。 本論文將依照不同中心金屬離子,分成兩個部份來討論五個混配基金屬配位化合物:第一部分將討論由錳(II)離子與3-bpd、bpe、NCS-配基,所合成出來的兩個化合物,[Mn(mu2-3-bpd)2(NCS)2(H2O)2].2H2O (1)與[Mn(mu 2-bpe)(NCS)2(H2O)2].(3-bpd).(bpe).H2O (2);第二部份將討論由鎘(II)離子與3-bpd、dpe、NCS配基,所合成出來的兩個化合物,[Mn(mu2-3-bpd)2(NCS)2(H2O)2].2H2O (1)與[Mn(mu 2-bpe)(NCS)2(H2O)2].(3-bpd).(bpe).H2O (2);第二部份將討論由鎘(II)離子與3-bpd、dpe、NCS配基所合成出來的三個化合物,{[Cd(mu2-3-bpd)2(NCS)2].C2H5OH}n (3)、{[Cd(mu2-3-bpd)(mu2-dpe)(NO3)2].(3-bpd)}n (4)與{[Cd(mu2-dpe)2(NCS)2].3-bpd.2H2O}n (5)。其中化合物1與2為超分子結構,而化合物3、4與5則為二維具延展性格子狀結構的金屬有機骨架配位聚合物。這五個化合物的中心金屬(錳(II)與鎘(II)離子),皆為六配位的扭曲八面體(Distorted Octahedral)配位環境。 化合物1與2的錳(II)離子都接上兩個NCS配基(以N接金屬)與兩個水分子,其中化合物1是接上兩個3-bpd配基(以吡碇環上氮原子配位),形成六配位幾何結構,而化合物2則是接上兩個bpe配基(以吡碇環上氮原子配位)形成六配位幾何結構。化合物1與2皆會形成一維鏈狀的配位聚合物,化合物1是由兩個3-bpd配基以monodentate的配位模式接上Mn(II)離子來形成單一分子,分子間再藉由pi-pi堆積作用力延伸形成一維架構,而化合物2則是由經bpe配基以架橋之形式連接Mn(II)離子形成一維鏈狀結構。化合物1與2的三維超分子結構則是由配基間之pi-pi堆積作用力(pi-pi Stacking Interactions)與配位及結晶水分子間之氫鍵作用力(Intermolecular Hydrogen Bonds)共同堆疊架構而成。 化合物3的中心金屬鎘(II)離子接上六個含氮配基,包括四個3-bpd配基與兩個NCS配基。3-bpd配基以bis-monodentate的鍵結模式架橋連接鎘金屬離子形成一個以四方格子為架構單元之二維層狀結構,層與層間以ABAB…平行堆疊交錯之方式延伸形成三維結構,堆疊後所產生之孔洞則由溶劑乙醇分子所佔據。化合物4的中心金屬鎘(II)離子也是接上六個含氮配基,包括兩個3-bpd、兩個dpe配基及兩個NO3配基,而鎘(II)離子藉由3-bpd與dpe配基以bis-monodentate的鍵結模式架橋形成一個具長方格子狀之二維層狀金屬有機骨架,層與層間也是以ABAB…平行堆疊交錯之方式延伸形成三維結構,堆疊後所產生之孔洞則由未配位之3-bpd分子所佔據。與化合物化3、4類似,化合物5的中心金屬鎘(II)離子也是接上六個含氮配基,包括四個dpe配基及兩個NCS配基,dpe配基以bis-monodentate的鍵結模式架橋連接鎘金屬離子進而形成二維層狀金屬有機骨架,二維層狀骨架則互相穿透形成三維的結構,所產生之孔洞則由未配位之3-bpd與水分子所佔據。 此兩系列的配位化合物除了探討其結構排列外,結構熱穩定性亦在本論文中會有詳細的探討與說明。
The synthesis, structural characterization and thermal stability of five metal-organic coordination compounds by metal ions (M = Mn2+ and Cd2+) with bipyridine-type ligands of 3-bpd (1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene), dpe (1,2-bis(4-pyridylethane)) or bpe (1,2-bis(4-pyridylethylene)) are studied. The first part concerns two Mn(II) complexes of [Mn(mu2-3-bpd)2(NCS)2(H2O)2].2H2O (1) and {[Mn(mu2-bpe)(NCS)2(H2O)2].(3-bpd).(bpe).H2O}n (2), while the second part contains three Cd(II) coordination polymers of {[Cd(mu2-3-bpd)2(NCS)2].C2H5OH}n (3), {[Cd(mu2-3-bpd)(mu2-dpe)(NO3)2].(3-bpd)}n (4), {[Cd(mu2-dpe)2(NCS)2].3-bpd.2H2O}n (5). All of them were prepared in solution and fully characterized by elemental analysis, Infrared Spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. Structural determination reveals that the coordination geometry at Mn(II) in compounds 1 or 2 is a distorted octahedral which consists of two nitrogen donors from NCS- ligands, two oxygen donors from water molecules, and two nitrogen donors from 3-bpd ligands for 1 and two bpe ligands for 2, respectively. Two 3-bpd ligands in 1 adopt a monodentate binding mode and the bpe in 2 adopts a bis-monodentate bridging mode to connect the Mn(II) ions forming a 1D chain-like coordination polymer. Both thepi-pi stacking interactions and intermolecular hydrogen bonds among the ligands and solvent molecules do play important roles in construction the 3D supramolecular architectures. In compound 3, each Cd(II) ion is six-coordinated by six nitrogen donors from four 3-bpd with a bis-monodentate coordination mode and two NCS- ligands. The distorted square building blocks connect each other to generate a 2D non-interpenetrating MOF. Each square unit consists of four Cd(II) atoms and 3-bpd ligands, which form a 44-membered ring structure. In 4, the Cd(II) ion is six-coordinated by six nitrogen donors from two 3-bpd, two dpe and two NO32-ligands. Both the 3-bpd and dpe ligands adopt a bis-monodentate coordination mode to connect the Cd(II) ions forming a 2D, non-interpenetrating parallelogram MOF. Each parallelogram unit consists of four Cd(II) atoms, two 3-bpd ligands and two dpe, which also form a 44-membered ring structure. In 5, the Cd(II) ions is coordinated by four pyridine nitrogen donors of dpe ligands in the basal plane and two NCS- nitrogen donors in the axial sites. The dpe acts as a bridging ligand to connect the Cd(II) ions forming a 2D interpenetrating MOFs by using a square-planar node as the basic unit, which also form a 44-membered ring structure. The free 3-bpd ligands in 4 and 5 play an important role on the construction of their 3D supramolecular architecture via the pi-pi stacking interactions.