透過您的圖書館登入
IP:3.19.234.118
  • 學位論文

應用於基因傳遞實驗之微氣泡製備與研究

The Manufacture and Research of Magnetic Microbubbles Used in Vitro Gene Delivery Experiments

指導教授 : 呂志誠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,超音波與超音波對比劑已有於許多在生物醫學上的應用。微氣泡為最常見之超音波對比劑。高聲壓之超音波會誘發穴蝕效應(cavitation),配合微氣泡的施用更能增強穴蝕效應,而穴蝕效應被推論可增加細胞膜之通透性進而達到提高基因傳遞(gene delivery)效率之目的。目前除了超音波法基因傳遞法外,磁轉染法(magneto- fection)在基因傳遞的研究上也有一些成果,加上各方之研究亦揭露靜磁場對細胞通透性的影響,故以此為動機,試圖製造會受磁力影響之磁導性微氣泡以用於未來可能進行之綜合式基因傳遞實驗中。 本研究利用超音波探頭聲振參雜不同濃度蔗糖或葡萄糖之牛血清蛋白(BSA)溶液以製造傳統微氣泡。經過微氣泡的觀察與耐熱度測試,證明摻雜物對微氣泡的穩定度與耐熱度有正面的影響,而這些自製微氣泡的超音波測試結果,也顯示其可當作超音波對比劑。製備磁導性微氣泡的方法如下。利用EDC活化磁性奈米粒子(Fe3O4)表面之氫氧基,然後加入BSA混合反應以製備BSA- Fe3O4 複合體,或是直接將修飾過之Fe3O4與傳統微氣泡接合即可。最後利用光學顯微鏡,掃描式電子顯微鏡與原子力顯微鏡觀察製得之磁導性微氣泡其Fe3O4奈米粒子與微氣泡的接合狀況,並分析磁導性微氣泡製備的可行性。

並列摘要


Ultrasound of high intensity can cause cavitation, and use of ultrasound contrast agents (microbubble) can enhance it. Cavitation is inferred to increase the permeability of cell membranes and than to enhance the efficiency of gene delivery. In the study, BSA solutions and different weight groups of dextrose or glucose was added in the solutions and the mixture was sonicated by using the microprobe of the ultrasonic liquid processor for seconds to produce air-wrapped microbubbles. The test results revealed the bubbles can be used as ultrasound contrast agents and both dextrose and glucose can contribute the stability and heat resistance of microbubbles, which is found proportional to the amount of additives. Basically magnetic microbubbles can be made based on common microbubbles by using the ultrasonic liquid processor to sonicate BSA-nanoparticle conjugates synthesized by BSA and Iron(II, III) Oxide. The magnetic nanoparticles are covalently bounded on BSA through EDC. In addition, we also can apply EDC to combine magnetic nanoparticles with BSAbased microbubbles to form magnetic microbubbles.

參考文獻


[5] 賴俊延,超音波穴蝕效應於基因傳遞效率之研究,碩士論文,國立台灣大學電機工程學研究所,台北,2005。
[1] K . Hanajiri , T . Maruyama , Y . Kaneko , H . Mitsui , S . Watanabe , M . Sata , R . Nagai , T . Kashima , J . Shibahara , M . Omata, “Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound,” Hepatology Research, vol. 36, 2006, pp. 308-314.
[2] J. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, vol. 41, no. 2, 1996, pp. 135-160.
[3] F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Therapy, vol. 9, no. 2, 2002, pp. 102-109.
[4] C. M. Newman, A. Lawrie, A. F. Brisken and D. C. Cumberland, “Ultrasound gene therapy: on the road from concept to reality,” Echocardiography, vol. 18, no. 4, 2001, pp. 339-347.

被引用紀錄


張嘉格(2013)。超音波微氣泡引發之空穴效應強度量化研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00666
白啟宏(2009)。靜磁場與超音波微氣泡轉染對於基因傳遞影響研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00203
簡瑋文(2010)。靜磁場曝照對超音波微氣泡基因傳遞之增強效應-體外細胞實驗〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1208201012583300
許展榕(2012)。應用於基因傳遞之超音波導波管設計優化與評析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1708201214410200

延伸閱讀