透過您的圖書館登入
IP:3.137.161.222
  • 學位論文

整合型鋰電池與超級電容器能量管理系統之研製

Design and Implementation of an Integrated Li-ion and Super-capacitor Energy Management System

指導教授 : 歐勝源
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文提出一種利用數位化控制之整合型鋰電池與超級電容器能量管理模組,整合超級電容器充電模組及鋰電池充電模組,並加入鋰電池後端之DC/DC升壓轉換器,且經由微控制器進行能量分配管理,彌補鋰電池操作於較高負載時電池能量急遽變動之缺點,避免電池因能量急遽變動產生較高溫升,進而達成延長鋰電池之使用壽命。 鋰離子電池充電部分是利用LTC公司(Linear Technology)所出產之LTC4052為控制器,其充電法則為多段式定電流充電法(Multi-stage Constant Current, MCC)及脈衝式充電法(Pulse),超級電容器均壓充電控制器則是採用LTC4425。升壓型轉換器使用TI (Texas Instruments)出產之TPS61222為PWM控制器。系統控制以Microchip所出產之微控制器(Microcontroller Unit, MCU) dsPIC33FJ06GS202為整體系統之控制核心。利用微控制器偵測鋰電池與超級電容器之電流及電壓,並使用程式實現所提電能管理控制策略,使系統能夠依據負載功率變動狀態進行超級電容器與鋰電池之能量分配。 本論文所使用的鋰離子電池之優點為較無記憶效應、體積小、容量大以及充 電電壓較高等。超級電容器具有高功率密度、壽命長、優異的充放電速度以及操作溫度範圍較寬等優點。本論文所選用的鋰離子電池規格為3.7 V/350 mA,額定功率容量為1.295 Wh;超級電容器規格為2.5 V/3.3 F。本文以鋰電池與超級電容器充放電模組進行實驗,當瞬時負載變動較大時,將超級電容器接載,藉以輔助鋰電池在重載時之能量輸出。此外,本論文中所採用的控制IC具有均壓充電功能,在充電後可達成串接超級電容器間之電壓平衡。 鋰電池與超級電容器充放電電路之設計規格如下;輸入直流電壓為5.5 V,最大輸入電流為1 A,定電流輸出模式下之最大負載電流為270 mA,而中載為170 mA,且DC/DC升壓型轉換器之輸出電壓為5 V。實驗結果驗證本論文所提之各項功能與控制策略之正確性及可行性。

並列摘要


This thesis presents an integrated energy management system for Li-ion battery and super-capacitor. The proposed system integrates a super-capacitor charging module and a Li-ion battery charging module, and adds a DC/DC boost converter as the post-regulator for Li-ion battery. The energy distribution via the micro-controller management to make up Li-ion battery for higher load status to extend the Li-ion battery life. The proposed energy management system associated with the control strategy can distribute the output energy required for load situation, especially the abruptly varied load. The controller for Li-ion battery is LTC4052 manufactured by Linear Technology (LTC), wherein the familiar multi-stage constant current charging (MCC) method and pulse charging method both are used. The controller for super-capacitors to achieve voltage balance charging is LTC4425. The PWM controller TPS61222 by Texas Instruments (TI) is used for the boost converter. The micro-controller dsPIC33FJ06GS202 by Microchip is utilized as the control core of entire system. The used micro-controller detects current through and voltages across the Li-ion battery and super-capacitors, and performs the implemented control program to achieve the proposed control strategy for energy management system to distribute the required energy even under the abrupt load variances. Li-ion battery takes advantages of high energy density, high operation voltage and non-memory effect. The advantages of super-capacitor includes high power density, long life, excellent charge and discharge speed, and a wide range of operating temperature. The specification of the used Li-ion battery is 3.7 V/350 mA, the rated capacity is 1.295 Wh and super-capacitor specifications is 2.5 V/3.3 F. Besides charging and discharging control for both Li-ion battery and super-capacitor, the control strategy proposed in this thesis programs Li-ion battery as the primary source to load, that is, in normal operations, energy is supplied to load by Li-ion battery. Additionally, the control method connects super-capacitor to Li-ion battery with parallel both as the power source for the abrupt load situation if necessary. For charging balance control between the super-capacitors, an existing IC is used to achieve equal voltages across individual super-capacitor. The design specifications are as follows : the input voltage is 5.5 V, the maximum input current is 1 A, the output constant current is 270 mA, and the output voltage of DC/DC converter is 5 V. Finally, the experimental results verify correctness and feasibility of the proposed circuit structure and control strategy.

參考文獻


[20] 張濟任,利用8051微控制器實現之鋰離子電池快速充電器的研製,碩士學位論文,國立臺北科技大學電機工程系,台北,2010。
[21] 李長恩,以數位控制實現之三種鋰離子電池充電法則,碩士學位論文,國立臺北科技大學電機工程系,台北,2011。
[1] H. Delavaripour, H. R. Karshenas, A. Bakhshai, and P. Jain “Optimum Battery Size Selection in Standalone Renewable Energy Systems,“ in Proc. of the Telecommunications Energy Conference, 33rd, pp. 1-7, 2011.
[2] D. M. T. J. Williams, A. M. Gole, and R. W. Wachal, “Repurposed Battery for Energy Storage in Applications of Renewable Energy for Grid Applications,” in Proc. of the Electrical and Computer Engineering Canadian Conference on, 24th, pp. 001446,001450, 2011.
[3] H. A. -H. Hussein and I. Batarseh, “A Review of Charging Algorithms for Nickel and Lithium Battery Chargers, ” IEEE Trans. Vehicular Technology, vol.60, no.3, pp.830-838, 2011.

被引用紀錄


陳聖儒(2014)。具零電流切換之串聯電池組充放電平衡電路研製〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00168
施乃文(2014)。以數位控制實現具電池修復功能之同步整流充電器〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00167
蕭仲勛(2014)。用於電動載具之鋰釔電池電量估測技術〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00165

延伸閱讀