透過您的圖書館登入
IP:18.117.153.38
  • 學位論文

鎳紫質、亞鐵金屬錯合物與鐵赤血鹽薄膜的製備、特性及其對鳥嘌呤和腺嘌呤的電催化性質之研究

Preparation and Characterization of Ni(4-TMPyP)、Fe(II) complexes and iron hexacyanoferrate film and Their Electrocatalytic Properties with Guanine and Adenine.

指導教授 : 陳生明

摘要


本研究主要分為三部分來討論,第一部份為我們研究水溶性鎳紫質 (Ni(4-TMPyP))的電聚合過程在強鹼或弱鹼的水溶液中可以產生穩定電化學活性薄膜,此薄膜可製備於玻璃碳電極、白金電極、黃金電極以及透明的半導體銦錫氧化物(ITO)等電極之表面上,電化學石英晶體微天平與循環伏安法可用來研究聚合薄膜的即時成長情形。由電化學的性質可明顯的指出薄膜的氧化還原狀態為固定之水溶性鎳紫質薄膜。電化學石英晶體微天平的結果顯示出此氧化還原對有離子交換反應。將此高分子薄膜轉移到弱鹼或強鹼中顯示出一新的氧化還原對,而該薄膜的形式電位與pH有關。鎳紫質薄膜修飾電極也可證實H2O的電催化氧化過程。氧氣的放出可藉由循環伏安法、計時安培法和旋轉環-碟電極方法(RRDE)來決定,以及用血紅素此雙觸媒系統當作催化劑固定在環電極上來偵測氧氣的電催化還原反應。氧氣的生成可藉由血紅素和鐵紫質此雙觸媒系統當作催化劑來偵測氧氣的電催化還原反應。我們可藉由水溶性鎳紫質薄膜修飾電極來獲得雙氧水(H2O2)、聯胺(N2H4)、羥胺(NH2OH)和半胱胺酸(L-cysteine)的電催化氧化反應。 第二部分利用iron(II) bis(2,2':6',2"-terpyridine) 和Fe(II)tris(1,10-phenanthroline)之金屬錯合物當作均相的催化劑對於鳥嘌呤(guanine)、腺嘌呤(adenine)、5’-鳥嘌呤核苷單磷酸鹽(guanosine-5’-monophosphate)和單股DNA(ssDNA)進行電催化氧化的研究。iron(II) bis(2,2':6',2"-terpyridine) 之金屬錯合物對於鳥嘌呤的電催化和電分析性質可利用計時安培法並使用旋轉環-碟電極進行測量。ron(II)tris(5-amino-1,10-phenanthroline) 之金屬錯合物可經由電聚合過程所形成的聚合薄膜固定在黃金、白金、鎳和玻璃碳電極上。電化學石英晶體微天平與循環伏安法可用來研究聚合薄膜的即時成長情形。FeII(5-NH2-1,10-phen)3之聚合薄膜不但對於鳥嘌呤,而且對鳥嘌呤和腺嘌呤的混合也具有良好的電催化氧化活性。 第三部分為我們成功的利用循環伏特安培法在兩種一價陽離子(K+和Na+)的電解液中,直接混合Fe3+ 與Fe(CN)63- 製備得鐵赤血鹽薄膜。使用電化學石英晶體微天平和循環伏特安培法,研究鐵赤血鹽薄膜分別在兩種一價陽離子(K+和Na+)的電解液中的即時生長和紀錄其電化學性質。其結果指出由鐵赤血鹽的氧化還原過程可確定薄膜的固定化狀態。由電化學石英晶體微天平結果顯示在K+和Na+的電解液中,對於這兩對氧化還原對有離子交換反應。鐵赤血鹽薄膜在K+和Na+的電解液中對於鳥嘌呤、腺嘌呤和該混合狀態下顯示有不同的電催化氧化性質。鐵赤血鹽薄膜對於菸鹼醯胺腺嘌呤二核苷酸(NADH)、多巴胺(dopamine)、半胱胺酸、聯胺和羥胺具有電催化氧化活性,而對於雙氧水也具有電催化還原活性。利用旋轉環-碟電極來研究鐵赤血鹽薄膜對多巴胺的電催化氧化反應。

並列摘要


Part Ⅰ:Electropolymerization of nickel tetrakis(N-methyl-4-pyridyl)porphyrin (Ni(4-TMPyP)) produces of stable and electrochemically active films in strong and weak basic aqueous solutions. These films was produced on glassy carbon, platinum, gold, and transparent semiconductor tin oxide electrodes. The electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ growth of poly(Ni(4-TMPyP)) films. The results indicated that the redox process was confined to the immobilized film. The electrochemical quartz crystal microbalance(EQCM) results showed an ion exchange reaction for the redox couple. The polymer films showed one new redox couple, and when transferred to strong and weak basic aqueous solutions, the formal potential was found pH dependent. The electrocatalytic oxidation of H2O by a nickel tetrakis(N-methyl-4-pyridyl)porphyrin film-modified electrode was also performed. The mechanism of oxygen evolution was determined by cyclic voltammetry, chronoamperometry and RRDE methods and a biocatalyst system using hemoglobin as catalyst on the ring electrode to detect the oxygen electrocatalytic reduction. The oxygen evolution was determined by a bicatalyst system using hemoglobin, and iron tetrakis (N-methyl-2-pyridyl)porphyrin as catalyst to detect the oxygen electrocatalytic reduction. The electrocatalytic oxidation of H2O2, N2H4, NH2OH and L-cysteine by the film-modified electrode obtained from water-soluble nickel porphyrin was also investigated. Part II:The electrocatalytic oxidation of guanine, adenine, guanosine-5’-monophosphate(GMP) and ssDNA was performed in the presence of iron(II) bis(2,2':6',2"-terpyridine) and Fe(II) tris(1,10-phenanthroline) complexes as a homogeneous catalysts with Fe(II/III) redox couple. The electrocatalytic and electroanalytic properties of guanine with an iron(II) bis(2,2':6',2"-terpyridine) complex was measured by the amperometry method using the rotating disk electrodes. Electropolymerization of iron(II) tris(5-amino-1,10-phenanthroline) complex produced thin polymer films on a gold, platinum, nickel, and glassy carbon electrode. The electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry were used to study the in situ this film growth. The polymer film obtained from FeII(5-NH2-1,10-phen)3 showed good electrocatalytic oxidation towards the guanine, as well as for the mixture of guanine and adenine. Part III:Iron hexacyanoferrate films were prepared using consecutive cyclic voltammetry directly from the mixing of Fe3+ and Fe(CN)63- ions from solutions of two monovalent cations (K+ and Na+). An electrochemical quartz crystal microbalance(EQCM), cyclic voltammetry were used to study the growth mechanism of the Ironhexacyanoferrate films from two monovalent cations system, respectively. The results indicated that the redox processes were confined to the immobilized Iron hexacyanoferrate. The EQCM results showed K+ and Na+ ion exchange reaction for the two group redoxcouples. The electrocatalytic reoxidation properties of guanine, adenine, and theirmixture by the Iron hexacyanoferrate films were determined and show differentelectrocatalytic properties in K+ and Na+ aqueous solutions. The electrocatalyticoxidation of NADH, dopamine, L-cysteine , N2H4 and NH2OH were also investigated. The electrocatalytic reduction of H2O2 was also determined. The electrocatalytic reactions of dopamine by the Iron hexacyanoferrate films were investigated using the rotating ring-disk electrode method.

參考文獻


[1]. P. Saber, W. Lund, Talanta, 29 (1982) 457.
[6]. R. F. Lane, A. T. Hubbard, J. Phys, Chem., 77 (1973) 1401.
[7]. C. R. Martin, T. A. Rhoades, J. A. Ferguson, Anal. Chem., 54 (1982) 1639.
[8]. C. S. Cha, J. Chen, P. F. Liu, Electroanal. Chem., 345 (1993) 463.
[12]. E. Buttner, R. Holze, J. Electroanal. Chem., 508 (2001) 150.

延伸閱讀