在1997年,Goodenough團隊提出LiMPO4的通稱,同年度Padhi提出並論證LiFePO4可做為可充電鋰離子電池的正極材料;在2000年,Amine 等人以實驗出橄欖石結構之LiCoPO4晶粒結構大小;2001年Yamada等人,以凝膠-溶膠合成橄欖石結構之LiMnPO4;在2004年,Herle等人以固態法合成橄欖石結構之LiNiPO4。 傳統上磷酸鋰鐵電池材料對於環境無害,取得方便,充電與放電間結構相似,運轉時安全穩定性佳。且地球上鐵的蘊藏豐富成本低、具熱穩定性佳、具電子導電循環性增強以及鋰離子間距離增加,故活性高,目前已廣泛應用在電動自行車、油電混合車與電動車。 因為LiFePO4複合材料,由於鐵元素導電能力較其他材料低,因此若使用碳包覆於正極材料,可提升至大規模、高速率或縮小晶粒徑度使離子空間增加,提升放電量;故嘗試提出四種正極材料LiCoPO4、LiMnPO4、LiNiPO4與LiFePO4,並個別探討其理論容量、充/放電脈衝功率、充/放電時間、COP與電流效率,可期望未來能應用在大型電動車輛、太陽能及風力發電的儲能設備、混合電動車,邁向高效益、低成本化產品時代。
In 1997, Goodenough et. Al. present the called of LiMPO4, at the same year, Padhi proves that LiFePO4 can be used as the cathode materials of rechargeable lithium-ion battery;In 2000, Amine et. Al. has investigate the crystal size of olivine structure LiCoPO4;In 2001, Yamada et. Al. has fabricated olivine structure LiCoPO4 by sol-gel;In 2004, Herle et. Al.has fabricated olivine structure LiNiPO4 by solid state method. Traditional Lithium Iron Phosphate Battery is not harmless to environment, easy to obtain, the charge and discharge structure are similarity, very safe and stable while working. And the earth is rich of Iron, so the cost of iron is low, besides, iron has good thermal stability, high activity, so it has been widely use in hybrid vehicles, electric cars, electric bikes. LiFePO4 compound material, iron’s conductivity is lower than other material, so if use carbon coated on the cathode, can improve to big scale, high rate or decrease crystal size to increase ion space, thus to increase dicharge. So we discuss four kinds of the cathode material: LiCoPO4、LiMnPO4、LiNiPO4 and LiFePO4,discuss the theoretical capacity, frequency of charge/discharge, COP and current efficiency, respectively. Hope we can use this technology on large electric vehicles, solar and wind power storage device, hybrid vehicle in the future, and into a high efficiency, low cost products generation.