透過您的圖書館登入
IP:216.73.216.99
  • 學位論文

表面多孔性高分子材料之製備

Preparation of Polymer Film with Porous Surface

指導教授 : 鄭國忠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


轉印技術具有製程簡單、高輸出、低成本的優勢,尤其不受到光源波長的限制,是一種極具有潛力的半導體製程技術,可用以改善傳統光學微影技術受到光源繞射極限的限制,且易使其量產化。 本研究利用化學誘發相分離以及配合轉印的方法,製成一具有多孔性結構的薄膜,並且選擇不同模板界面,以控制薄膜表面欲轉印之圖案以及孔洞之形態。在本研究中,以雙酚A型的環氧樹脂(D.E.R. 331)與長鏈型的聚乙二醇環氧樹脂(D.E.R. 732)為聚合單體,二次乙基三胺(DETA)為硬化劑,並分別使用DIBK及環己醇為溶劑,於恆溫下利用逐步聚合的硬化反應,合成具有多孔性表面之薄膜,並利用SEM觀察薄膜的形態。研究結果發現,單體溶液與溶劑會在聚合過程中,於界面處發生相分離,形成表面多孔之形態,其孔徑尺寸會隨著溶劑的種類與比例而影響,當單體與溶劑互溶性較佳時,其可得到較為密集的孔洞形態,而溶劑含量愈高時,其孔洞會愈大,而孔徑尺寸會呈現出較為寬廣的分佈,實驗也發現當選擇模板作為界面時,其孔洞會隨者翻印後之圖案有排列的趨勢。故膜表面孔洞隨溶劑之種類、含量、界面間潤濕性與翻印模板之影響,藉此吾人可以改變上述因素調控薄膜表面形態。

並列摘要


In this study, the porous membranes were made of stepwise polymerization of a mixture of bisphenol-A epoxy resin (D.E.R. 331), or long chain polyglycol diepoxide resin (D.E.R. 732), and curing agent, diethylenetriamine (DETA), in various solvents, such as 2,6-dimethyl-4-heptanone and cyclohexanol. The surface morphology of membranes was observed by a SEM. It was showed that the surface morphology of membranes can be tailored by the contact films, different solvent, and the volume percentage of solvent. The surface morphology of membrane shows a few smaller pores when the monomers are dissolved well in the solvent. The porous morphology of membrane is also controlled by the volume percentage of solvent. The pore size increases with increasing the amount of solvent. When a mold with ordered pattern was as the interface covering on the epoxy solution, the pores on the surface of the cured membrane will be assembled by the mold.

參考文獻


[1] M. Mulder, “Basic principles of membrane technology,” 2nd ed., Kluwer Academic Publishers, Vol.109, pp.1420-1421 (1997).
[3] T. H. Young, J. Y. Lai, W. M. You, and L. P. Cheng, “Equilibrium phase behavior of the membrane forming water-DMSO-EVAL copolymer system,” Journal of Membrane Science, Vol.128, pp.55-65 (1997).
[4] N. A. Hoenich, D. Levett, S. Fawcett, “Biocompatibility of haemodialysis membranes, ” Journal of Biomedical Engineering, Vol.8, pp.3-8 (1986).
[5] L. Broens, D. M. Koenhen and C. A. Smolders, “On the mechanism of formation of P. P. O. ultrafiltration membranes,” Desalination, Vol.22, pp.205 (1977).
[6] L. H. Sperling, “Introduction to physical polymer science,” 2nd ed, Wiley Interscience, New York (1991).

延伸閱讀