透過您的圖書館登入
IP:18.116.118.198
  • 學位論文

以電流模式主動元件為基礎設計儀表放大器與高階可調濾波器

Design of Instrumentation Amplifier and High-Order Tunable Filter Based on Current-Mode Active Elements

指導教授 : 黃育賢 陳建中

摘要


本論文主要著重於利用電流模式主動元件來做為儀表放大器與可調頻寬濾波器的實現。共分三部份之研究:第一部份,使用全差動差分電流傳輸器設計儀表放大器,目的在於將微小的訊號放大,而微弱的輸入訊號受到雜訊的影響非常的大,所以重點在於設計高共模拒斥比,透過電流模式可以達到較好的共模拒斥比來抵抗雜訊。製程技術採用TSMC 0.35μm 2P4M 製程,供應電壓 ±0.9V,功率消耗64.23μW,晶片面積為289μm* 273μm (不含PAD);第二部份,利用線性轉換方法合成主動濾波器,目的在於將主動元件數目達到最精簡數,並將新型元件電流控制電流傳輸轉導放大器合成三階柴比雪夫低通濾波器,此元件具有內建電阻的優點,設計濾波器時不需外接電阻,相當適合晶片的製作。製程技術採用TSMC 0.18μm 1P6M 製程,頻寬為2MHz,供應電壓±0.9V,功率消耗5.16mW,晶片面積為250μm* 160μm (不含PAD)。第三部份,也是使用線性轉換方法合成主動濾波器,再利用電流控制的原理和數位訊號切換來控制電流控制電流傳輸轉導放大器,並合成四階可調式柴比雪夫低通濾波器,達成主動濾波器頻寬可調整之目的。製程技術採用TSMC 0.18μm 1P6M 製程,可調頻寬範圍為185kHz到575kHz,供應電壓±0.75V,功率消耗2.7mW,晶片面積為205μm* 389μm (不含PAD)。

並列摘要


This thesis mainly focuses on the implementation of instrumentation amplifier and tunable bandwidth filter by using current current-mode active elements. This thesis can be divided into three parts. The first part of this thesis is to design instrumentation amplifier using fully differential difference current conveyor, which purpose is to amplify signal that is small and weak, but weak signal will be affected strongly by noise, therefore, the design of high common-mode rejection ratio will be the key point. Process technology using TSMC 0.35μm 2P4M process is adopted, the supply voltage is ± 0.9V, the power consumption is 64.23μW, and the chip area is 289μm* 273μm (without PAD). The second part of this thesis is to synthesize active filter using linear transformation methods, the number of active component will aim to achieve the fewest number, and implement a 3rd-order Chebyshev low-pass filter using new device current controlled current conveyor transconductance amplifier, this device has a built-in resistance merit, because of on requiring external resistors when designing a filter, they are very suitable for integration. Process technology using TSMC 0.18μm 1P6M process is adopted, the bandwidth is 2MHz, the supply voltage is ± 0.9V, the power consumption is 5.16mW, and the chip area is 250μm* 160μm (without PAD). The third part of this thesis is also to synthesize active filter using linear transformation methods, and controlling current controlled current conveyor transconductance amplifier using the principle of current controlled and digital signals, then implement a 4th-order tunable Chebyshev low-pass filter to achieve the purpose of adjustable bandwidth. Process technology using TSMC 0.18μm 1P6M process is adopted, the tunable bandwidth range is 185kHz to 575kHz, the supply voltage is ± 0.75V, the power consumption is 2.7mW, and the chip area is 205μm* 389μm (without PAD).

參考文獻


[14] W. Jaikla and M. Siripruchyanun, “Low-component electronically controllable dual-mode universal biquad filter using DO-CCCIIs,” in Asia-Pacific Conference on Communications, APCC, 2007, pp. 331-334.
[26] 陳裕融,一個新型應用於生醫系統之類比前端電路,碩士論文,國立台北科技大學電腦與通訊研究所,台北,2008.
[1] D.Y. Kim, S.W. Choi, J.C. Ahn, and N. Fujii, “The design and comparison of elliptic filters with an OTA-C structure,” Proc. IEEE Int. Symp. Circuits and Systems, pp. 484-487, 1991.
[3] C. M. Chang, B. M. Hashimi, Y. Sun, and J. Neil Ross,” New high-order filter structures using only single-ended-input OTAs and grounded capacitors,” IEEE Trans. on Circuits and Systems—II: Express Brief, Vol. 51, No. 9, pp. 458-463, 2004.
[6] H. Schmid, “The current-feedback OTA,” IEEE International Symposium on Circuits and Systems, Volume 1, pp. 655-658, May 2001.

延伸閱讀