透過您的圖書館登入
IP:3.14.134.7
  • 學位論文

以水熱法合成法製備Bi1-XYXO1.5粉體之研究

Preparation of Bi1-XYXO1.5 powder by hydrothermal synthesis

指導教授 : 徐永富 王錫福

摘要


本研究利用水熱合成法製備氧化鉍(Bi¬2O3)基電解質粉末,期能取代傳統所使用的YSZ(yttria stabilized zirconia)電解質。SOFC之固態電解質需具備高離子傳導性,而具螢石結構為主的氧化鉍(Bi2O3)基電解質粉末具有極高離子導電率;其離子傳導率比傳統的YSZ高之外,又可以在較低溫下進行操作,可應用在中溫型(500~800oC) SOFC。在本研究中,水熱反應前驅物為硝酸鉍、氧化釔或硝酸釔,藉由改變礦化劑於前驅物溶液中之濃度和pH值、不同濃度之溶劑、反應溫度和持溫時間等參數,合成出Bi1-XYXO1.5 (X = 0.15、0.25)系列之電解質粉末,並由XRD、ICP及SEM分析水熱法所合成出之電解質粉末。結果顯示,Bi0.75Y0.25O1.5配比之粉末,在礦化劑為KOH,礦化劑於前驅物之濃度為2M,另外再加入5 ml(12.5 vol%)之硝酸,水熱溫度200oC並持溫10小時合成後之粉末最接近純相。

並列摘要


In this study, synthesis bismuth oxide-based electrolyte powders were prepared by hydrothermal synthesis, which have high ionic conductivity for intermediate temperature (500〜800oC) SOFC (Solid Oxide Fuel Cell) applications. The ionic conductivity of bismuth oxide-based electrolyte powders was not only higher than the traditional YSZ electrolytes , but also can be operated in lower temperature (500 ~ 800oC). A series of Bi1-XYXO1.5 (X = 0.15, 0.25) powders were fabricated hydrothermally by altering the mineralizers, the precursor solution concentration, reaction temperatures and holding times and so on. Then the chemical composition, crystal structure and microstructure of the electrolyte powders were analyzed by XRD, ICP and SEM . The results showed that the powder of Bi0.75Y0.25O1.5 using KOH as the mineralizer with 2M of concentration, and extra added nitric acid, then hydrothermal synthesis at 200oC for 10 hours can result in a near pure phase powder.

並列關鍵字

SOFC electrolyte hydrothermal Bi2O3

參考文獻


[3] N. M. Sammes, G. A. Tompsett and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Euro. Ceram. Soc., vol. 19, no. 10, 1999, pp. 1801-1826.
[4] H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta, vol. 28, no. 1, 1979, pp. 121.
[5] Akitreu Watanabe, “Phase equilibria in the system Bi2O3-Y2O3: no possibility of δ-B2O3 stabilization,” Solid State Ionics 86-88, 1996, pp. 1427-1430.
[9] W. Z. Zhu and S. C. Deevi, “A review on the status of anode materials for solid oxidefuel cells,” Mater. Sci. Eng. A, vol. 362, 2003, pp. 228-239.
[13] N. Laosiripojana, "Reviews on solid oxide fuel cell technology," Engineering journal, vol. 13, 2009, pp. 65-83.

延伸閱讀