論文第一部分提出具有限流模式之交流-直流鋰電池充電器,採用TSMC 0.35μm 2P4M CMOS製程實現。此鋰電池充電器將1MHz的交流訊號經過第一級使用降低逆損耗技術的整流器轉換成直流電壓之後,再提供給第二級的升壓型轉換器對鋰電池做充電,當鋰電池電壓到達4.2V時,系統停止充電,充電電流為90mA。此鋰電池充電器還具有限流功能,當限流模式開啟時,透過控制迴路來縮小電路的電感儲能時間,充電電流可以降至50mA。整個系統由兩顆晶片組成,整流器的晶片面積約為1.408 X 1.476mm2,升壓轉換器的晶片面積為1.487 X 1.484 mm2。 論文第二部分提出使用自動頻率選擇及鎖定技術之高效率遲滯降壓轉換器,採用TSMC 0.18μm 1P6M CMOS製程實現。提出來的遲滯控制的降壓式轉換器具有快速的暫態響應,而使用自動頻率選擇及鎖定技術可以提高系統的輕載效率,同時解決遲滯控制切換頻率不固定的缺點。從10mA至400mA,根據不同的負載大小,此降壓式轉換器的切換頻率分別鎖定在250k, 500k, 1M和2MHz。提出的降壓式轉換器在95%以上的負載工作範圍都擁有90%以上的轉換效率,而最高效率為96.27%。晶片面積為1.169 X 1.198 mm2。
In firt part, we proposed a charger circuit. The charger circuit can convert the sinusoidal signal to the direct current (DC) by rectifier with reducing reverse loss techniques. Once battery voltage is less than 4.2V, the charge current is about 90mA. And when the input large than default value that we design before, the restricted-current control circuit can decrease charging time to limit charge current. The proposed charge circuit is combined by two chips, a rectifier and a boost converter. They are fabricated by TSMC 0.35μm 2P4M CMOS. The chip area is 1.408 x 1.476 mm2 and 1.487 x 1.484 mm2 respectively. In second part, a high-efficiency wide workload hysteresis buck converter using auto selectable frequency-locked techniques is designed with TSMC 0.18-μm 1P6M process. The proposed buck converter yields fast-response by using hysteresis control. The workload range, power efficiency, and EMI noise problem are improved by auto-selectable frequency and frequency-locked techniques. The selected switching frequency is determined by load current. Simulation results show that this buck converter’s switching frequency is locked at four frequencies for the load current between 10 and 400mA: 250k, 500k, 1M, and 2MHz. Furthermore, it achieves more than 90% power efficiency over 95% of the load range, with a peak efficiency of 96.27%. The chip area is 1.169 x 1.198 mm2