在現代全球化商業環境中,製造業各項機能均顯得非常重要,物料採購在供應鏈管理中即是重要的一環,本研究的目的是以TD-FP-growth演算法,於進貨資料庫中過濾供應商群集,將重要度較低之供應商刪去,進行關鍵供應商的選取,並以遺傳演算法、粒子群最佳化演算法以及GPSO三種演算法進行訂購量分配。 在實證研究中,本研究將以消費性電子產品製造商C公司的實際進貨資料,進行各關鍵供應商訂購量分配,訂購量分配階段利用遺傳演算法、粒子群最佳化演算法以及GPSO三種演算法作為供應商訂購量分配的方法,建構出成本最小化的訂單組合。經由個案實例證實,以TD-FP-growth演算法配合GPSO演算法,可有求解供應商進行訂購量分配之問題。
In the modern global business environment, every manufacturing function has its corresponding importance in manufacturing industry. Especially the material purchasing, it plays a critical role in supply chain management (SCM). Thus, the purpose of this study is to employ TD-FP-growth algorithm to prune off unimportant suppliers for finding the key supplier set from purchasing database. The experiments were conducted by using case company’s daily purchasing ledger focusing on the consumer electronic product manufacturers. Then, order quantity allocation was conducted by applying a hybrid of Genetic Algorithm (GA) and Particle Swarm Optimization Algorithm (PSO) (GPSO) to construct the order allocation with minimum cost. The model evaluation results indicated that the integration of TD-FP-growth algorithm and GPSO algorithm really can be applied in the area of order quantity allocation.