透過您的圖書館登入
IP:3.139.87.133
  • 學位論文

具順序相依整備時間之分派式流程型工廠排程

Distributed Flowshop Scheduling Problems with Sequence-Dependent Setup Times

指導教授 : 應國卿
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於許多產業由從單一工廠轉變為多工廠的生產模式,分派式流程型工廠排程問題成為近年來排程研究的重要方向之一,實務上排程之績效好壞常受整備時間的影響,過去研究指出有70%的排程人員認為在他們所安排的排程中,至少有一部份的操作是需要考量相依整備時間的;而有13%的排程人員認為在他們所安排的排程中,所有的操作都需要考量相依整備時間,但過去分派式流程型工廠排程問題的研究均忽略工件之整備時間,因此,本研究首次在分派式流程型工廠排程問題加入具順序相依整備時間之條件限制,以符合生產環境的真實情況。本研究針對具順序相依整備時間之分派式流程型工廠排程問題分別提出反覆貪婪演算法(Iterated Greedy ; IG)及修正型反覆貪婪演算法(Revised Iterated Greedy ; RIG),經由泰勒標準測試題庫之驗證,證實本研究所提出之演算法之求解績效十分優異,相關研究成果可提供業者實務應用及後續相關學術研究的參考。

並列摘要


Since many industries from a single factory into a multi-mode of production, distribution flowshop scheduling problem scheduling research in recent years become one of the important directions. In face scheduling performance is good or bad is often affected by the setup times. In the past that distribution flowshop scheduling problems studies have ignored the sequence dependent setup time. This research provided two kinds of Iterated Greedy Algorithm (IG) to solve the problem, and verify the solution of efficiency from the proposed Revised Iterated Greedy Algorithm (RIG). The experimental results are compared, which shows that Revised Iterative Greedy Algorithm can obtain the better solution performance in the distributed flowshop scheduling problem with setup times. And it provides practical application of industry and use as a reference for subsequent academic research.

參考文獻


2. J. N. D. Gupta and W. P. Darrow, "The two-machine sequence dependent flowshop scheduling problem," European Journal of Operational Research, vol. 24, no. 3, 1986, pp. 439-446.
3. 熊敏詩,「結合優勢性質與基因遺傳演算法於具有整備時間之單機與非等效平行機之研究」,碩士論文,元智大學,桃園,2007
4. S. S. Panwalkar, R. A. Dudek and M. L. Smith, "Sequence Research and The Industrial Scheduling Problem," Symposium on the Theroy of Scheduling and its Applications, 1973, pp. 29-38.
5. B. Naderi and R. Ruiz, "The distributed permutation flowshop scheduling problem," Computers & Operations Research, vol. 37, 2010, pp. 754-768.
6. R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. R. Kan, "Optimization and approximation in deterministic sequencing and scheduling: a survey," Annals of Discrete Mathematics, vol. 5, 1979, pp. 287-326.

延伸閱讀