透過您的圖書館登入
IP:18.216.230.107
  • 學位論文

浸鍍法製備釔安定氧化鋯電解質層於電漿熔射噴塗陽極表面上之研究

The study of 8YSZ electrolyte deposition on plasma sprayed anode by the dip-coating method

指導教授 : 楊永欽

摘要


本研究利用浸鍍法技術於電漿熔射噴塗陽極上製備8YSZ電解質層,期望能得到緻密的鍍層。在此能藉由浸鍍法不受基材形狀限制之特點而製備孔隙率4%以下且覆蓋均勻的電解質層。研究中以不同的燒結溫度及持溫時間改善電解質層的緻密度,同時探討陽極與電解質燒結後之顯微組織變化。在浸泡過程中藉由控制濕度配合間隔時間進而改變漿料乾燥的速率,電解質膜厚度亦可藉由增加浸泡的次數進行改善。實驗結果以掃描式電子顯微鏡(SEM)觀察試片微觀結構得知,最佳燒結溫度為1450度並持溫6小時的狀況下,溫度太低會造成電解質層有較高的孔隙率,溫度太高則會使試片過度燒結,而產生較大孔洞集中在陽極與電解質層間。大氣相對濕度對於浸鍍法的製程並無太大影響,唯有配合上較短的間隔時間30秒,在高濕度下會使漿料不易乾燥,而無法製備完整的電解質層。由電化學交流阻抗分析證實,增加燒結溫度確實能幫助降低歐姆阻抗,但當燒結溫度達到1550度時,會使電解質附著不佳,電荷不易跨越增加界面阻抗。

並列摘要


In order to get a dense coating, this study to prepare 8YSZ electrolyte layer on plasma sprayed anode by the dip-coating technology. The method don’t limit the shape of substrate, moreover, it has advantage of producing the uniform coating under to 4 % porosity. In the study, using different sintering temperature and holding time to improve the density of electrolyte layer, and explore the anode and electrolyte changes in the microstructure after sintering. By changing humidity and intermission time in the dipping process can influence the rate of drying the slurry, furthermore the thickness of the electrolyte membrane can be improved by increasing the number of immersion. The results in scanning electron microscopy (SEM) observation that the specimen microstructure, the best sintering conditions is 1450度 for 6 hours, when the temperature is too low will cause the electrolyte layer with higher porosity, but too high will make the specimen sintering excessive, and have a bigger holes between the anode and the electrolyte layer. Relative atmospheric humidity for the dipping process is not much influence, except with a short time 30s in the high humidity. In this conditions will make the slurry is difficult to dry, so it can’t prepare the complete layer of electrolyte. With AC impedance analysis, increasing the sintering temperature can reduce the ohmic resistance. But when sintering temperature reaches 1550度, it will cause the poor adhesion of electrolyte, the charge is not easy to across the interface and also increasing the interface resistance.

並列關鍵字

SOFC 8YSZ Electrolyte Dip-coating

參考文獻


[4] W. A. Stanley, Direct Energy Conversion, 1982, Allyn and Bacon.
[6] Nguyen Quang Minh, “Ceramic Fuel Cell”, Journal of the American Ceramic Society, 1993, 76, 563-588.
[8] Hitoshi Sasaki, Shoji Otoshi, Minoru Suzuki, Tadayuki Sogi, Atsuko Kajimura, Norio Sugiura, Masamichi Ippommatsu, “Fabrication of high power density tabular type solid oxide fuel cells”, Solid State Ionics, 1994, 72, 253–256.
[9] Ozer Unal, Arthur Heuer, “Microstructures of Y2O3-Stabilized ZrO2 Electron Beam-Physical Vapor Deposition Coatings on Ni-Base Superalloys”, Journal of the American Ceramic Society, 1994, 77, 984–992.
[10] Yuji Miyahara, “Characterization of sputtered yttria‐stabilized zirconia thin film and its application to a metal‐insulator‐semiconductor structure”, Journal of Applied Physics, 1992, 71, 2309.

延伸閱讀