透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

新型含芘胺基之聚醯胺醯亞胺及聚硫醚醯亞胺的合成及其光電性質的研究

Synthesis and Optoelectronic Properties of Novel Poly(amide-imide)s and Poly(thioether-imide)s Bearing Pyrenylamine Units

指導教授 : 蕭勝輝

摘要


本論文包括兩個研究主題,主要探討由一種具有芘基胺結構的二胺單體N,N-di(4-aminophenyl)-1-aminopyrene所衍生的芳香族聚醯胺醯亞胺[poly(amide-imide)s; PAI]與聚硫醚醯亞胺[poly(thioether-imide)s; PTEI]的合成及其光電性質,如吸收光譜、光致發光、電化學及電致變色性質等。 在論文的第一部分,首先藉由N,N-di(4-aminophenyl)-1-aminopyrene與兩當量的苯偏三酸酐(trimellitic anhydride)行縮合反應製成為一帶有兩個醯亞胺環的二羧酸單體N,N-bis(trimellitimidophenyl)-1-aminopyrene。再將此二醯亞胺二羧酸單體與兩種芳香族二胺以及N,N-di(4-aminophenyl)-1-aminopyrene與四種具有醯亞胺環的二羧酸進行磷酸化聚縮合反應製得新型具有二苯基芘基胺結構的PAI。這些PAI均易溶解於多種有機溶劑並可經由他們的溶液塗佈鑄成強韌且可撓曲性的高分子薄膜。它們的玻璃轉化溫度在211- 352 °C之間,受熱溫度在500 oC 之前不會產生明顯的熱分解。塗佈在ITO玻璃上的PAI薄膜的循環伏安測定結果顯示出可逆的電化學氧化及還原反應並伴隨著明顯的顏色改變,薄膜的顏色可由中性態的淡黃色轉變成氧化態的藍紫色氧化態及還原態的橘色。將二苯基芘基胺結構導入在PAI主鏈的amide側會使PAI薄膜具有較低的氧化電位及較佳的氧化還原可逆性,因此可賦予這些PAI較好的電致變色效能,如高變色效率、低變色時間、以及高變色穩定性。 第二部分在探討ㄧ種新型具二苯基芘基胺的雙馬來醯亞胺與兩種二硫醇經Michael聚加成反應製備而得的聚硫醚醯亞胺(PTEI)及其螢光、電化學及電致變色。這些PTEI的溶液及薄膜在受到紫外光激發時會發射藍色螢光,循環伏安測定結果顯示它們在陽極的電化學氧化反應具有一些穩定性,但是在陰極的還原反應則不具可逆性。這些薄膜並具有明顯的電致變色現象,它們可由中性態的無色轉變為氧化態的紫色及還原態的橘色,陽極氧化變色較為明顯及穩定。

並列摘要


This thesis deals with the synthesis and characterization of an aromatic diamine monomer bearing pyrene segments and its derived aromatic poly(amide-imide)s (PAI) and poly(thioether-imide)s (PTEI). Optoelectronic properties such as UV-vis absorption, photoluminescence, electrochemistry and electrochromism of these diphenylpyrenylamine-based polymers were investigated. First, a dicarboxylic acid monomer bearing two built-in imide rings, namely N,N-bis(trimellitimidophenyl)-1-aminopyrene, was synthesized from the condensation of N,N-di(4-aminophenyl)-1-aminopyrene and two equivalent amount of trimellitic anhydride (TMA). New PAIs with diphenylpyrenylamine segments were prepared by the direct phosphorylation polyamidation reactions from two different aromatic diamines with N,N-bis(trimellitimidophenyl)-1-aminopyrene and from N,N-di(4-aminophenyl)-1-aminopyrene with four different imide ring-preformed dicarboxylic acids, respectively. All the polymers were readily soluble in many organic solvents and could be solution-cast into tough and flexible polymer films. These PAIs showed glass-transition temperatures (Tgs) in the range of 211- 352 °C, and they did not show significant weight-loss before 500 oC. Cyclic voltammograms of the PAI films cast onto the indium-tin oxide (ITO)-coated glass substrate revealed reversible electrochemical oxidation and reduction accompanied with color changes from the pale yellow neutral state to the deep blue oxidized state and the orange reduced state, respectively. Incorporating the diphenylpyrenylamine unit on the amide side of PAIs led to lower oxidation potentials and higher redox reversibility and, thus, better electrochromic performance such as high coloration efficiency, fast switching speed, and high electrochromic stability. The second part of this thesis deals with the synthesis of a series of novel photoluminescent and electrochromic PTEIs were prepared from new diphenylpyrenylamine-based bismaleimide and two dithiols via Michael polyaddition. Both the solutions and thin films of the PTEIs showed an obvious blue photoluminescence. Cyclic voltammetry studies revealed that they showed a moderate stability in the anodic oxidation process, but the cathodic reduction process is irreversible. The PTEI films exhibited an obvious electrochromic behavior, with color change from a colorless neutral state to a purple oxidized state and an orange reduced state. The anodic oxidative coloring is more significant and stable.

參考文獻


2. Cummins, D.; Boschloo, G.; Ryan, M.; Corr, D.; Rao, S. N.; Fitzmaurice, D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B 2000, 104, 11449-11459.
3. Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 2002, 14, 845-848.
4. Lee, E. S.; DiBartolomeo, D. L. Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater Sol Cells 2002, 71, 465-488.
5. Heuer, H. W.; Wehrmann, R.; Kirchmeyer, S. Electrochromic Window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89-94.
6. Sonmez, G.; Wudl, F. Completion of the three primary colours: the final step toward plastic displays. J. Mater. Chem. 2005, 15, 20-22.

延伸閱讀