透過您的圖書館登入
IP:3.15.144.170
  • 學位論文

添加金屬銅對SUS 304不銹鋼顯微組織及抗菌性質影響

Microstructure and Antibacterial Properties of Cu-modified SUS 304 Stainless Steel

指導教授 : 唐自標
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗研究沃斯田鐵系不銹鋼中,不同銅含量經過固溶處理與時效處理後與硬度、顯微組織、抗菌特性與耐蝕性之影響。實驗中採用SUS 304不銹鋼添加適量之金屬銅經熔煉後進行機械加工,施以均質化固溶後再以時效處理讓銅元素以ε-Cu型態析出於不銹鋼表皮,以進行各項試驗以及抗菌試驗。含銅不銹鋼經鑄造之後,殘留部份凝固過程所形成之δ-肥粒鐵,使在鑄造狀態下巨觀觀察之顯微組織主要由析出δ-肥粒鐵與沃斯田鐵基地相所組成。含銅沃斯田鐵系抗菌不銹鋼經過固溶處理與時效處理後,基地相中會析出ε-Cu相,使硬度因固溶強化與析出硬化而隨銅添加量上昇。含銅沃斯田鐵系抗菌不銹鋼經固溶處理與時效處理後,基地相中會析出ε-Cu相, 無論添加2 wt.%銅或4 wt.%銅在經歷24小時抗菌試驗後均能達到滅菌率90%以上之抗菌效果。而在極化腐蝕實驗方面,基地相中析出的ε-Cu相破壞鈍態氧化薄膜之連續性與緻密性導致耐蝕性降低,且隨著析出ε-Cu量的增加,沃斯田鐵系抗菌不銹鋼之耐蝕性有持續惡化之趨勢。

關鍵字

SUS 304不銹鋼 菌性質 ε-Cu相

並列摘要


The current study investigates the effects of different copper content after solid-solution treatment and aging treatment with hardness, microstructure, antibacterial property ,and proties of corrosion resistance. SUS 304 stainless steel is melted by adding 2-6 wt.% copper before machining , solid-solution treatment,and aging treatment. δ-ferrite forms during solidification and cause the casting of the microstructure observed mainly by the precipitation of δ-ferrite and austenite. Cu-modified SUS 304 stainless steel after solid-solution treatment and aging treatment, the base phase will precipitate the ε-Cu phase, the hardness due to solid-solution strengthening and precipitation hardening and increased with the amount of copper added. Cu-modified SUS 304 stainless steel after solid-solution treatment and aging treatment, the base phase will precipitate the ε-Cu phase, whether adding 2 wt.% Cu or 4 wt.% Cu through 24 hours of antibacterial tests were able achieve very well antibacterial rate. In the electrochemical experiments, the corrosion resistance of SUS 304 stainless steel deteriorates with amount of ε-Cu increase. It is observed that precipitation of ε-Cu has adverse effects on the corrosion resistance of SUS 304 stainless steel.

參考文獻


[22]L. S. Themistou and D. N. Crowther, "Strength and impact behavior of age hardenable copper containing steels," Materials Science and Technology, vol.15, 1999, p. 1069.
[23]P. J. Othen, M. L. Jenkins, G. D. W. Smith and W. J. Phythian, "Transmission electron microscope investigations of the structure of cooper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni," Philosophical Magazine Letters, vol.64, no. 6, 1991, pp. 383-391.
[24]M. Charleux, F. Livet, F. Bley, F. Louchet, Y. Berchet, "Thermal aging of an Fe-Cu alloy: Microstructural evolution and precipitation hardening," Philosophical Magazine A, vol.73, no. 4, 1996, pp. 883-897.
[25]I. T. Hong and C. H. Koo, "Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel," Materials Science and Engineering A, vol.393, 2004, pp. 213-222.
[26]N. Suutala, T. Takalo and T. Moisio, " The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds," Metall. Trans. A, vol.10, no. 4, 1979, pp. 512-514.

延伸閱讀