透過您的圖書館登入
IP:3.137.221.163
  • 學位論文

製備多層奈米二氧化鈦薄膜於染料敏化太陽能電池之應用

Preparation of Multilayer TiO2 Thin Films and Application to Dye-sensitized Solar Cells

指導教授 : 張合 韓麗龍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用三種不同形貌的二氧化鈦材料,分別為水熱法(Hydrothermal)製備的氧化鈦奈米管(Tnt)、奈米顆粒(H200)及真空潛弧製造系統(SANSS)製備的奈米氧化鈦懸浮液(SF),於染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)光陽極之應用,並進行光電極的微結構設計,製備高效率的染料敏化太陽能電池。 將商用二氧化鈦粉體(Degussa P25)置於強鹼溶液中以水熱法製得氧化鈦奈米管(Tnt),於染料敏化太陽能電池光陽極之應用,實驗結果顯示,以Tnt奈米管所製得的光陽極,在AM1.5模擬太陽光(100 mW/cm2)下進行太陽能電池測試,其光電轉換效率為2.84%,將Tnt經450℃、500℃及550℃煅燒處理後發現,經550℃煅燒所製得的光陽極,其光電轉換效率為5.77%是三者間最佳,再將奈米管Tnt和奈米顆粒P25以不同比例混合所製得的電極,其最佳光電轉換效率為5.57%,最後近一步,利用奈米顆粒H200、Tnt-C550及SF設計多層二氧化鈦光陽極H200/Tnt-C550/SF,其最佳的光電轉換效率為7.07%。

並列摘要


In this study, three different morphology of titanium dioxide materials, titania nanotubes (Tnt), nanoparticles (H200) were prepared by hydrothermal and Titanium dioxide nanofulid (SF) was prepared by Submerged Arc Nanoparticles Synthesis System (SANSS), were utilized for microstructure design of TiO2 electrode to fabricate high-efficiency DSSC. Tnt from commercial TiO2 powders (Degussa P25) by alkaline hydrothermal method, was applied to fabricate the DSSC photoanode. It was found that the Tnt-based DSSC exhibited a conversion efficiency of 2.84% under A.M 1.5 simulated light irradiation (100mW/cm2). When Tnt was calcined at 450℃, 500℃and 550℃ found that the conversion efficiency of 5.77% at 550℃ was the best among the tested samples. The Tnt was mixed with nanoparticles (P25) with various ratio obtained the photoanode, the conversion efficiency of 5.57%. Finally, were utilized for microstructure design of TiO2 electrode to fabricate high-efficiency DSSC. The results show that the H200, Tnt-C550 and SF to fabricate multilayer TiO2 composites photoanode, the conversion efficiency of H200/Tnt-C550/SF-based DSSC was enhanced to 7.07%.

參考文獻


[66] 陳韋安,應用電泳沉積技術於染料敏化太陽能電池與天然染料特性分析之研究,碩士論文,國立台北科技大學製造科技研究所,台北,2008。
[1] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, 1991, pp. 737-740.
[3] Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin and M. Grätzel, "High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts," Nature Materials, vol. 7, no. 8, 2008, pp. 626-630.
[6] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A new silicon p-n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, 1954, pp. 676-677.
[8] O. Schultz, S. W. Glunz and G. P. Willeke, "Multicrystalline silicon solar cells exceeding 20% efficiency," Progress in Photovoltaics: Research and Applications, vol. 12, no. 7, 2004, pp. 553-558.

被引用紀錄


余智融(2010)。整合DSSCs與熱電產生器構成新型態 光熱電模組之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1608201014585800
姜禮正(2010)。染料敏化太陽能電池之反電極與天然染料製備〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201020174200

延伸閱讀