透過您的圖書館登入
IP:3.12.41.179
  • 學位論文

局部週期性極化反轉Z切鈮酸鋰

Local Periodical Poling on Z-cut LiNbO3

指導教授 : 王子建
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究在Z切鈮酸鋰表面的脊形結構進行局部週期性極化反轉。在極化反轉電極設計上,使用有限元素法進行分析,計算施加電壓在脊形結構上的電極時,於鈮酸鋰內部所產生的電場分佈,以推得極化反轉時初始極化區域的分佈。論文中討論不同電極結構下,電極寬度、電極間距、二氧化矽厚度對於電場分佈的影響,希望藉由提升電場分佈的均勻度,使得數個峰值電場可同時在鈮酸鋰脊形區域產生極化反轉,再藉由橫向極化反轉的作用,達成將整個脊形結構區域極化反轉的目的。 實驗上,首先使用質子交換後蝕刻的方式,在鈮酸鋰+Z面製作脊形結構,接下來製作具有週期形圖樣的二氧化矽與鈦金屬膜,以構成所需的電極結構。所製作的電極結構有:片狀電極、三條式微米電極、多條式奈米電極等三種,其中前二者使用光學微影法與光阻剝離方式製作電極圖樣;奈米電極的製作是使用電子束微影與感應式耦合電漿蝕刻技術,製作具有奈米凹槽之氧化矽絕緣層,再以鈦膜覆蓋其上以構成奈米電極結構。當施加電壓於脊形結構上的週期性電極時,可使鈮酸鋰表面的脊形範圍產生極化反轉,三種電極結構所需的極化反轉電壓分別是400V、140V和160V,論文中並討論製程參數對於極化反轉結果的影響。

並列摘要


In this thesis , we study the local periodically poled on the Z-cut lithium niobate ridge structure. When design in polarization reversal electrode, using the finite element method to analysis, and calculate the applied voltage on the electrode of the ridge structure caused the electric field distribution in lithium niobate. Then infer the initial polarization reversal region. We discuss the different electrode structures, electrode width, electrode spacing, the thickness of silicon dioxide impact electric field distribution. And desire to enhance the uniformity of electric field distribution, the number of peak electric field making reversal region at the same time lithium niobate ridge. As transverse polarization reversal, reached the purposes of entire region reversal in the ridge structure . At the first, we use the proton exchange method after etching in lithium niobate, for fabrication the ridge structure on +Z surface in this experiment. In the next, we fabricate periodically silicon dioxide pattern and titanium film to form the desired electrode structure. The three electrode structure such as, sheet electrodes, three micron stripe electrodes, and multiple nano stripe electrodes. Two of the former we use optical lithography and lift-off methods to produce the electrode patterns.The nano-electrodes structure is made by electron beam lithography and inductive coupled plasma etching technique to produce a nano-groove of the insulating silicon oxide layer, then sputter titanium film to form the nano-electrode structure. When a voltage is applied to ridge structure on the periodic electrode, the lithium niobate surface can be poled . Three electrode structure required for polarization reversal voltages are 400V, 140V and 160V, respectively . And discuss the process parameters for the poled results.

參考文獻


[1] A. L. Schawlow and C. H. Townes, “ Infrared and Optical Masers ,” Phys. Rev., vol. 112, pp. 1940–1949, 1958.
[2] J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.
[3] S. E. Miller, “Integrated Optics: An Introduction,” Bell Syst. Tech. J., vol. 48, no. 7, pp. 2059-2068, 1969.
[5] L. H. Peng, Y. C. Zhang, and Y. C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp.1-3, 2001.
[6] D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett., vol. 44, pp. 847-849, 1984.