透過您的圖書館登入
IP:18.216.230.107
  • 學位論文

微量Ce對Al-Y-Ni非晶合金晶化行為及顯微結構之研究

Study of Minor Ce on the Crystallization Behaviors and Microstructures of Al-Y-Ni Amorphous Alloys

指導教授 : 陳適範 林於隆

摘要


本研究將(Al87Y8Ni5)100-xCex(x=0,1 at.%)以單輥旋淬法製作厚度約30~35 μm合金薄帶,XRD圖呈現寬廣繞射峰,且SEM圖也無結晶相產生,顯示其結構為非晶質。將合金薄帶冺用示差掃描熱分析儀(DSC)測定其熱性質,當x=1 at.%非晶薄帶於483.2 K出現玻璃轉換溫度(Tg),過冷液態區(ΔTx)為41.3 K。非恆溫退火部分,當退火溫度為592K時x=0 at.% 非晶薄帶最高硬度值570.8 Hv,而x=1 at.%非晶薄帶最高硬度592.8 Hv其退火溫度為650 K。恆溫退火部分,恆溫30分鐘時x=0 at.% 非晶薄帶有最高硬度551.5 Hv,而恆溫80分鐘時x=1 at.%非晶薄帶有最高硬度602.2Hv。在退火過程中,因為奈米鋁晶在薄帶中析出,故有較高硬度值。XRD分析顯示,在非恆溫退火中,x=0 at.% 非晶薄帶晶化過程初期先析出α-Al,隨退火溫度提高Al3Y 、AlNi及無法冹定的介穩相陸續析出。x=1 at.% 非晶薄帶晶化過程初期先析出α-Al,隨退火溫度提高Al3Y、Al3Ce、AlCeNi、AlNi及無法冹定的介穩相也接續析出。在恆溫退火中, x=0,1 at.%非晶薄帶隨恆溫時間增加,其結晶相析出先後順序與非恆溫退火中的晶化過程相同。而從結晶活化能來看,當x=0 at.%時,結晶活化能為163 kJ/mol。而x=1 at.%時,結晶活化能為189 kJ/mol。因此添加微量Ce元素,可提高合金系統之熱穩定性。

並列摘要


The 30~35 μm thickness alloy ribbons of (Al87Y8Ni5)100-xCex(x=0,1 at.%) were produced by single roller melt-spinning method. The XRD spectra of (Al87Y8Ni5)100-xCex(x=0,1 at.%) alloy ribbons consisted of only broad diffraction peaks without any sharp Bragg peaks, and SEM-SE image has no crystallization shows, indicating they are amorphous in structure. The alloy ribbons by DSC measure the thermal properties, The (Al87Y8Ni5)99Ce1 alloy ribbons demonstrates a glass transition temperature (Tg)at 483.2 K, and its ΔTx is 41.3 K. In non-isothermal the alloy ribbons of x=0 at.% has the highest microhardness of 570.8 Hv at the annealing temperature is 592 K. And the alloy ribbons of x=1 at.% has the highest microhardness of 592.8 Hv at the annealing temperature is 650 K. In isothermal the alloy ribbons of x=0 at.% has the highest microhardness of 551.5 Hv at the annealing time is 30 min. And the alloy ribbons of x=1 at.% has the highest microhardness of 602.2Hv at the annealing time is 80 min. In annealing process, because in the ribbons of Al nanocrystalline precipitation, thereby increasing the microhardness. In non-isothermal and isothermal annealing the alloy ribbons of x=0 at.%, the α-Al、Al3Y 、AlNi and unknow metastable phase were then precipitated in sequence. And the alloy ribbons of x=1 at.%, the α-Al、Al3Y、AlNi、Al3Ce、AlCeNi and unknow metastable phase were then precipitated in sequence. At x=0 at.%, the activation energy for crystallization was 163 kJ/mol, x=1 at.%, the activation energy for crystallization was 189 kJ/mol. Therefore, addition of Ce element, can improve the thermal stability of the alloy.

參考文獻


[1] A. Inoue, K. T. Zhang and T. Masumoto, " Al-La-Ni amorphous alloys with a wide supercooled liquid region, " Material Transactions, JIM, vol.30, 1989, pp. 965-965.
[2] A. Inoue, " High strength bulk amorphous alloys with low critical cooling rates, " Materials Transactions, JIM, vol.36, 1995, pp. 866-875.
[3] M. Chen, " Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility, " Annual Review of Material Research, vol.36, 2008, pp. 445-469.
[4] A. Inoue, T. Zhang and T. Masumoto, " Preparation of bulky amorphous Zr-Al- Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties, " Materials Transactions, JIM, vol.36, 1995, pp. 391-398.
[5] S. Pang, T. Zang, H. Kimura, K. Asami and A. Inoue, " Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys, " Materials Transactions, JIM, vol.41, 2000, pp. 1490-1494.

延伸閱讀