透過您的圖書館登入
IP:18.216.105.175
  • 學位論文

水熱合成Bi1-XNbXO1.5+δ粉體與其特性之研究

Characterization of Bi1-XNbXO1.5+δ Powders by Hydrothermal Synthesis

指導教授 : 王錫福 吳玉娟
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究為探討中溫型(500∼800oC)固態氧化物燃料電池(solid oxide fuel cell, SOFC)之電解質以取代傳統所使用的YSZ(yttria stabilized zirconia)。操作溫度範圍在500∼800oC內,YSZ的氧離子導電度非常低,故本研究將以氧化鉍(Bi¬2O3)系統為研究重心。 在本研究中,水熱反應前驅物為硝酸鉍、氧化鈮,藉由改變礦化劑於前驅物溶液中之濃度、反應溫度和持溫時間等參數,成功的合成出Bi1-XNbXO1.5+δ (X = 0.25、0.28、0.35、0.45、0.54)系列之奈米級粉末,將試片進行XRD繞射分析、SEM微觀分析及四線式電阻量測分析,由SEM微觀分析下發現水熱合成後之粉末為球形,能有效控制其粉體形貌,粒徑約為80~100 nm,XRD分析出其為Bi3NbO7單一立方螢石結構,Bi0.79Nb0.21O1.5+δ粉末經過壓胚、燒結後之試片,在燒結條件為800oC、持溫2 小時下,利用四線式電阻量測其導電率,發現在800oC操作溫度之下,其導電率為0.35 Scm-1。

並列摘要


The aim of this study was to develop bismuth-based solid electrolytes with high ionic conductivity for intermediate temperature (500∼800oC) SOFC (solid oxide fuel cell) instead of conventional YSZ electrolytes showing very low ionic conductivity during 500∼800oC. In this study, a series of Bi1-XNbxO1.5+δ powders were fabricated hydrothermally by altering the mineralizers, reaction temperature and holding time. The precursor of bismuth nitrate and niobium oxide were fabricated nano size Bi1-XNbXO1.5+δ powders. The specimen were characterized by X-ray diffraction、scanning electron microscopy、 electrical conductivity. The morphology were spherical, can effectively control the powders morphology and mean powder size were 80~100 nm. Analysis of Bi3NbO7 cubic fluorite structure by XRD. Bi0.79Nb0.21O1.5+δ powders into dense pellets at sintered temperature 800oC/2 h, Bi0.79Nb0.21O1.5+δ had the highest conductivity by DC 4-wire resistance measurement. The conductivity was 0.35 Scm-1 at 800oC.

並列關鍵字

SOFC electrolyte hydrothermal Bi2O3

參考文獻


[24] 謝文碩,高溫型固態氧化物燃料電池之製程與特性研究,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2008。
[4] N. M. Sammes, G. A. Tompsett and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Euro. Ceram. Soc., vol. 19, no. 10, 1999, pp. 1801-1826.
[5] H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta, vol. 28, no. 1, 1979, pp. 121.
[6] B. Aurivillius and L. G. Sillen, “Polymorphy of bismuth trioxide,” Nature, vol. 155, 1945, pp. 305-306.
[7] R. Matsuzaki, H. Masumizu and Y. Saeki, “The phase transition of bismuth (III) oxide prepared by the thermal decomposition of bismuth sulfate,” Bull. Chem. Soc. Jpn., Vol. 48, no. 11, 1975, pp. 3397-3398.

延伸閱讀