透過您的圖書館登入
IP:3.133.12.172
  • 學位論文

曲面蜂窩結構之衝擊模擬分析

Study on the Impact Behavior of Curved Honeycomb Structures

指導教授 : 陳政順
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文研究內容將針對使用鋁合金5052-H38所製作的曲面蜂窩板進行衝擊模擬分析。文中利用有限元素分析軟體LS-DYNA模擬在不同的衝擊條件參數(衝擊速度、剛體球半徑大小、衝擊位置)下及不同的蜂窩結構參數(蜂窩壁厚、上蒙皮厚)下,然後針對受衝擊後的變形量來了解各參數的影響;就結果顯示,衝擊速度與剛性球半徑的增加使結構去吸收更多能量且變形量也隨之越大,而蜂窩壁厚、上板厚增加使耐衝能力都有所提 升。 然後運用田口法針對本文結構來進行規劃,其中控制因子有孔格大小、蜂窩壁厚、芯材材料和蒙皮材料等因子進行L9直交表分析實驗,並以變形量越小為實驗目標。透過S/N平均值反應圖及反應表來判斷,顯示出本文較有影響的因子為蒙皮材料上的選擇,其次為蜂窩芯材,接著是孔格大小最後才是蜂窩壁厚。

並列摘要


This paper focuses on deformation analysis of the 5052-H38 aluminum alloy curved honeycomb subjected to impact. The finite element analysis technique is used to explore the responses of honeycomb structures under different parameters of impact (impact speed, radius of steel ball and the impact locations) and parameters of cellular (cell wall thickness and the plate thickness), to understand the importance of each parameter. The results indicate that the higher impact speed and the larger radius of ball cause more deformation and more time to absorb the energy. And the increase of cell wall thickness and plate thickness of structure will increase the Impact-resistant capacity. The L9 orthogonal array from Taguchi method is also used to study the effect of parameters on deformation. The parameters studies include four main control factors which are cell size, cell wall thickness, cell material, plate material. And the experimental objective function is the deformation. Through the mean response chart and table of S/N , it is showed that the biggest factors is top plate material of honeycomb structure.

參考文獻


[2]McFarland, R. K., “Hexagonal Cell Structures under Post-buckling Axial Load,” AIAA.J, 1963, pp. 1380-1385.
[3]Gibson, L. J. and Ashby, M. F., “The Mechanisms of Two-dimensional Cellular Materials”, Proc. Roy. Soc., A382, 1982.
[4]Gibson, L. J. and Ashby, M. F., Cellular Solids, Structure and Properties, Pregamon Press, Oxford, 1988.
[5]Zhang, J. and Ashby, M. F., “The Out-of-Plane Properties of Honeycombs,” Int. J.Mech. Sci. vol. 34, 1992, pp. 475-489.
[6]Gibson, L. J. and Ashby, M. F., Cellular Solids, Structure and Properties,

被引用紀錄


江佑麟(2011)。不同彎曲角度蜂窩板之衝擊行為模擬分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0908201116583900
蔡林鈐(2012)。蜂窩結構板彎曲特性之模擬分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201216183300

延伸閱讀


  • 陳政順、江佑麟(2011)。不同彎曲角度蜂窩板之衝擊行為模擬分析。載於中華民國振動與噪音工程學會(主編),中華民國振動與噪音工程學會論文集(頁170-176)。中華民國振動與噪音工程學會。https://doi.org/10.30028/CSSVANNUAL.201106.0170
  • 蔡林鈐(2012)。蜂窩結構板彎曲特性之模擬分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201216183300
  • 邱崇倫(2009)。鋁合金蜂窩結構動態行為之模擬分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2408200918571500
  • 曾粕建、陳政順(2016)。蜂窩結構應用於安全帽墊料之衝擊模擬分析。載於中華民國振動與噪音工程學會(主編),中華民國振動與噪音工程學會論文集(頁202-206)。中華民國振動與噪音工程學會。https://www.airitilibrary.com/Article/Detail?DocID=a0000192-201606-201808140007-201808140007-202-206
  • Kwok, T. C. (1995). Dynamic stiffness method for curved structures [master's thesis, The University of Hong Kong]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0029-1812201200005419