透過您的圖書館登入
IP:3.144.212.145
  • 學位論文

以奈米矽場效應電晶體偵測順-反偶氮苯芳香族衍生物

Detection of cis-trans azobenzene derivatives with aromatic substituted groups by silicon nanowire field-effect-transistor

指導教授 : 蔡麗珠 蘇昭瑾

摘要


化學分子中有少數的分子會因為外在因素的影響而改變它的結構,如光、熱、機械應力及靜電刺激等,其中因照光而改變結構的分子稱之為光致變色分子,像是偶氮苯、二芳基乙烯、螺吡喃、螺噁嗪與俘精酸酐等皆為常見的光致變色分子,在本論文中所使用的分子為偶氮苯芳香族衍生物 (DBA) ,並利用化學修飾的方式將偶氮苯芳香族衍生物 (DBA) 與3-氨丙基三乙氧基矽烷以共價鍵的方式修飾於奈米矽線場效應電晶體上。 偶氮苯芳香族衍生物 (DBA) 是一種光致異構分子,它在365 nm及450 nm的波長時,會分別呈現順式及反式兩種結構。結構的改變會改變電子雲分佈且導致分子電偶極矩產生變化,經由多次重複的實驗,我們證明順式及反式DBA的不同分子偶極矩足以使奈米矽線場效應電晶體的電流產生明顯差異,因此可作為順式及反式分子的檢測器。如果電流的改變量夠大,這元件有希望可形成一個光驅動的開關。

並列摘要


Some types of molecules change their structures by light, heat, mechanical stress, or electrostatic stimulation. Photo-induced isomerism such as azobenzene, diarylethene, spiropyran, spirooxazine and fulgide are molecules which when illuminated with the light of a specific wavelength can undergo a conformation transition. In this study, we chose azobenzene derivative(DBA) was our choice, and modified DBA and APTES in silicon nanowires(SiNW) field effect transistor by chemical process. Azobenzene derivative(DBA) is a photo-induced isomerism, respectively, showing the cis- and trans- structure when illuminated with UV and visible light at 365nm and 450nm. The electron cloud (both the density and distribution) changes with the comformation transition, and can lead to different of dipole moments. As a result of many experiments, we proved that the different dipole moments between cis- and trans- DBA cause the FET current changed obviously, so it can be a cis- and trans- comformation sensor. It is possible to become a photoswitch if the FET current changed more obviously.

參考文獻


1. Tans, S.J., A.R.M. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature, 1998. 393(6680): p. 49-52.
2. Kong, J., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287(5453): p. 622-625.
3. Zhao, Y.-L., et al., Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Advanced Materials, 2008. 20(10): p. 1910-1915.
4. Cui, Y., et al., Doping and electrical transport in silicon nanowires. The Journal of Physical Chemistry B, 2000. 104(22): p. 5213-5216.
5. Hahm, J.-i. and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 2003. 4(1): p. 51-54.

被引用紀錄


藍家靚(2013)。具光電活性聚亞醯胺/奈米碳管之研究與應用〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300939

延伸閱讀