透過您的圖書館登入
IP:3.138.116.20
  • 學位論文

氫化鈦粉末熱處理之研究

Heat Treatment of TiH2 Powder

指導教授 : 李文興
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗利用氫化鈦粉末中氫暫存的特性,所以藉由熱處理將氫化鈦粉末還原成純鈦與氧化鈦,並在含氮環境下,使其形成氮化鈦。因此本實驗使用三種粒徑不同的氫化鈦粉末(3 μm,10 μm,35 μm)於氮氣下以及真空中進行熱處理。藉由熱處理溫度與熱處理時間等不同的研究變數的控制,觀察氫化鈦粉末在不同環境下熱處理之後,對於粉末的除氫情形、粉末形態、粉末結構與生成物的影響。本實驗利用一些檢測儀器,包含:SEM、EDS、XRD來分析粉末的表面形貌與組織成份。並配合熱重分析儀(TGA)與熱差分析儀(DTA),觀察粉末隨著溫度上升,其重量百分比的變化以及吸放熱反應的生成。 由實驗結果可以得到,隨著熱處理溫度的增加,能夠使氫化鈦粉末達到完全除氫;且在氮氣下能夠形成氮化鈦(TiN),在真空則發生氧化反應,形成氧化鈦(TiO)。增加處理時間,能促使反應更加完全。相同熱處理條件下,與小粒徑的粉末相比,大粒徑的粉末反應較不完全,是由於大粒徑粉末的體積較大所致。 另外由熱力學分析可知,計算自由能可以得到鈦與氧、氮反應的次序為TiN→TiO→Ti2O3→Ti3O5→TiO2,而從實驗結果中並沒有發現較穩定的氧化鈦結構形成,主要是由於在氮氣與真空的環境下,沒有提供足夠的氧氣與其反應。

關鍵字

氫化鈦 除氫 熱處理

並列摘要


In this study, the substituting element H was used to reduce Titanium Hydride powder into pure titanium, titanium oxide or titanium nitride by the processes of heat treatment under different atmosphere, N2 and vacuum. In this thesis, it has applied three kinds of different diameter(3 μm, 10 μm and 35 μm) TiH2 powders to carry out the heat treatment process under two different environments filled with nitrogen and vacuum respectively. By precisely controlling some varied experimental parameters including environment temperature and duration time, it could further study their dehydration characteristic and variations on morphologies, structures and combinations under these three different environments. In order to observe the powders’ surface morphologies and structure contents, it also utilizes some sophisticated detective instruments such as SEM, EDS, XRD. Furthermore, both TGA and DTA equipment are simultaneously used as analyzing tools to identify the relationship between powders’ temperature and variations of weight rate and reactions of endothermic and exothermic as well. In the present study, the findings demonstrate that increasing temperature could remove hydrogen in TiH2 powder completely. And under nitrogen environment, it could form titanium nitride, otherwise, under vacuum environment, it could develop oxidation. It would make the reaction completely by increasing duration time. In the same condition, larger dimension particles react incompletely compared to smaller ones. Moreover, based on the thermodynamics analyse, it could be found that the order of products can be classified as follows, TiN→TiO→Ti2O3→Ti3O5→TiO2through the considerations of free energy. Therefore, TiN and TiO all belong to unstable structure, but it could not find stable titanium oxide, such as TiO2 from the results .However, there was insufficient oxygen reacting with titanium under both nitrogen and vacuum environment.

並列關鍵字

TiH2 Dehydrogenation Heat Treatment

參考文獻


[8] Joseph T. Fraval et al., “Method of Producing Titanium Powder,” United States Patent #6,475,428 B1, 2002.
[9] M. Mitkov and D. Bozic, “Hydride-Dehydride Conversion of Solid Ti6Al4V to Powder Form,” Materials Characterization, 37, 1996, pp.53-60.
[10] C. R. F. Azevedo, D. Rodrigues, F. Beneduce Neto, “Ti-Al-V Powder Metallurgy(PM)via Hydrogenation-Dehydrogenation(HDH)Process,” Journal of Alloys and Compounds, 353, 2003, pp.217-227.
[12] Ralph M. Tapphorn and Howard Gabel, “The Solid-State Spray Forming of Low-Oxide Titanium Components,” Innovation in Titanium, 1998, pp.45-47.
[13] SGTE, Scientific Group Thermodata Europe, web site:http://www.sgte.org/.

延伸閱讀