透過您的圖書館登入
IP:3.128.78.41
  • 學位論文

以射頻磁控濺鍍法製備Zn1−xMgxO薄膜與其光電特性研究

The Electrical and Optical Properties of Zn1−xMgxO Film Prepared by Radio Frequency Magnetron Sputtering

指導教授 : 王錫福
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究於改變基板溫度下,以射頻磁控濺鍍300 nm厚之 Zn0.86Mg0.10Al0.04O薄膜於Eagle 2000康寧玻璃基板上。研究發現,當基板溫度從100oC增加至300 oC時,電阻率會由5.12 x 10-2 Ω-cm降低至4.19 x 10-2 Ω-cm。霍爾效應的量測結果顯示,在100 oC ~ 300 oC的基板溫度範圍,載子濃度會隨著基板溫度之升高而增加。此外本研究也藉由固定基板溫度改變退火溫度來提升Zn0.86Mg0.10Al0.04O薄膜的導電性質。當退火溫度增加至200 oC時,電阻率下降至8.41 × 10-3 Ω-cm,分別持續提高退火溫度至400 oC與500 oC時,雖然電阻率可大幅降低至7.85 × 10-3和7.78 × 10-3 Ω-cm。但當退火溫度增加至600 oC時,因為載子遷移率下降及薄膜能隙較高使得Zn0.86Mg0.10Al0.04O薄膜電阻率增加。

並列摘要


The Zn0.86Mg0.10Al0.04O films with 300 nm thickness were deposited onto Corning Eagle 2000 glass substrates by sputtering Zn0.82Mg0.14Al0.04O target using rf magnetron sputtering with various substrate temperature. The electric resistivity (ρ) of Zn0.86Mg0.10Al0.04O films continuously decreases from 5.12 x 10-2 Ω-cm to 4.19 x 10-2 Ω-cm as the substrate temperature is increased from 100oC to 300 oC. Hall measurement for the Zn0.86Mg0.10Al0.04O films sputtered in various substrate temperature. It shows that the carrier concentration are increases as the substrate temperature is increased from 100oC to 300oC, In this study, the electrical resistivity of Zn0.86Mg0.10Al0.04O films also reduced by various annealing temperature at substrate temperature of 300 oC. The ρ value could be reduced to 8.41 x 10-3 Ω-cm as annealing temperature of 200 oC. Further increasing annealing temperature to 400 oC and 500 oC respectively, the electric resistivity of Zn0.86Mg0.10Al0.04O films are further decreased to 7.85 x 10-3, and 7.78 x 10-3 Ω-cm. However, as the annealing temperature was increased to 600 oC, the electric resistivity of Zn0.86Mg0.10Al0.04O film is increased because the mobility is decreased and higher band gap.

參考文獻


2. N Bano, S Zaman, A Zainelabdin, S Hussain, I Hussain, O Nur, M Willander., “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method” Appl. Phys. Lett, vol. 108, 2010, pp.043103.
3. B. I. MacDonald, E. Della Gaspera, S. E. Watkins, P. Mulvaney, J. J. Jasieniak., “Enhanced photovoltaic performance of nanocrystalline CdTe/ZnO solar cells using sol-gelZnO and positive bias treatment” Appl. Phys. Lett, vol.115, 2014, pp.184501
4. T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, “Bottom-gate zinc oxide thin-film transistors (ZnO TFTs) for AM-LCDs” IEEE Trans. Electron Devices, vol. 55, 2008, pp. 3136–3142.
5. Jae Bin Lee, Hyeong Joon Kim, Soo Gil Kim, Cheol Seong Hwang, Seong-Hyeon Hong, Young Hwa Shin, Neung Hun Lee., "Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator” Thin Solid Film. vol.435,2003, pp.179–185.
7. T Ivanova, A Harizanova, T Koutzarova, B Vertruyen, Z Nenova., “Effect of different technological approaches on the optical properties of ZnO sol-gel thin films” Journal of Physics. vol.514,2014, pp.012009.

延伸閱讀