透過您的圖書館登入
IP:216.73.216.23
  • 學位論文

混合型順滑模態控制於高精度線性馬達摩擦力補償

The hybrid sliding mode controller design for linear motor friction compensation

指導教授 : 陳金聖

摘要


本論文提出混合型順滑控制於高精度線性馬達摩擦力補償。首先摩擦力參數模型是採用LuGre摩擦力模型,然後對系統平台的馬達質量與摩擦力五個參數進行估測,採用實驗方式估測出來,此方式具有收斂快速與高度準確性的效果。 應用LuGre摩擦力模型作為系統平台的摩擦力補償,因為摩擦力估測存在不準確度,再加上此系統平台有參數變動與參數不確定性影響,因此提出一個混合型順滑模態控制器,結合了全域型與積分型順滑控制器,其中全域型順滑控制器可保證系統的動態全程位於順滑層內,消除一般傳統順滑控制器的迫近模態不合理的極快速切換;而積分順滑控制器可以改善系統的穩態誤差。故混合型順滑控制器作為本系統的參數變動與摩擦力估測不準確度補償均有一定的效果。最後,在模擬與實驗結果中成功驗證,啟動區與換向區的摩擦力補償及穩態誤差均有一定的改善效果。

並列摘要


This paper proposes hybrid sliding mode controller, which can control linear motor friction compensation. At first, friction model is based on LuGre model to identify the five parameters of inertia and friction of system platform. It can be identified by experiments. The result of experiments has features of fast convergence and high accuracy. LuGre friction model can be applied to compensate the friction of system platform. Friction observation contains features of uncertainty. The system platform is affected by parameter variety and uncertainty. Therefore, a hybrid sliding mode controller combines global sliding mode controller and integral sliding mode controller. Global sliding mode controller can make sure that the system’s responses are controlled in the sliding layer that can eliminate unreasonably extreme fast change as sliding mode controller usually does. Integral sliding mode controller can modify steady system errors. Therefore, hybrid sliding mode controller has an effect on parameter variables and friction compensation to some extent. At last, the simulated and experimented results prove that the friction compensation and steady error of both areas can certainly be improved by the system.

參考文獻


[1] D. Karnopp, “Computer Simulation of Stick-slip Friction in Mechanical Dynamic System,” Transactions of the ASME Journal of Dynamic System Measurement and Control, vol. 107, 1985, pp.100-103.
[2] B. Armstrong, ”Control of Machines with Friction,” Klumwe Academic Publishers, 1991.
[4] S. Drakkunov, V. I. Utkin, “Sliding Mode Observer :Tutorial,” IEEE conf. on Decision and control, 1995, pp.3376-3378.
[5] C. Canudas de Wit and P. Lischinsky, “Adaptive Friction Compensation with Partially Known Dynamic Friction Model,“ International Journal of Adaptive Control and Signal Processing, vol. 11, 1997, pp. 65-80.
[7] S. Cetunkunt, D. Donmez, “CMAC Learning Controller For Sever Control Of High Precision Machine Tools,” in Proc. Amer. Control .Conf, San Francisco, CA, pp1976-1979, 1993.

被引用紀錄


賴柏澔(2012)。應用粒子群最佳化演算法結合擾動法於新型四足機器人之步態運動規劃與控制〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00220
邱博明(2011)。智慧型雷射功率與加工運動平台之控制〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1808201113463200
許欽仁(2012)。應用電荷搜尋演算法於雙軸壓電致動撓性平台之建模與控制〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0908201217364900
楊朝文(2014)。基於粒子群最佳演算法之干擾估測器於龍門平台的追蹤控制器設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2008201417030700
許志偉(2016)。倒單擺系統控制器設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2208201615482500

延伸閱讀