透過您的圖書館登入
IP:18.221.113.108
  • 學位論文

磁流變液的調製及黏度分析

The Fabrication and Viscosity Analysis of Magneteroheogical Fluid

指導教授 : 鍾清枝

摘要


磁流變液是一種新興的智能材料,主要由載液、磁性微粒及界面活性劑所組成,外加磁場時會發生明顯的磁化效應,現今已廣泛地運用在機械、化工及光電產業中,但不普及。 本研究係利用黏度為#1000的矽油為母體溶液,依照比例的不同分別添加油酸及葡萄糖起泡劑兩種界面活性劑,製成磁性流體。將所得的磁性流體置於不同的環境條件下,如磁場強度及溫度的變化等,進行靜置觀察及其黏度比較實驗。 實驗結果得知,使用葡萄糖起泡劑較油酸作為界面劑的穩定性佳,且添加的分散劑也有效能幫助磁粒在載液中的分散能力,進而提昇磁流變液的磁化效果,但並非都是愈多愈好,磁粒含量大於20%時,所添加的界面劑至少都需要大於2%,才能有較好的效果。實驗也得知當溫度升高至70℃後,反而會破壞磁液的流動性(工作性),且有蒸發的現象,因此機器使用上都應避免整體的溫度提高。

並列摘要


Magnetorheological fluids (MRF) are a kind of novel smart material , which are the suspension composed of based fluids, magnetic micro-particles and surfactants; it has significant magnetorheological effect in additional magnetic field. It has widely applied in mechanics, chemical engineering, and opto-eletronics industry now. In this study, the viscosity of silicone oil is the # 1000 for the main solution, in accordance with the different ratio of oleic acid and lauryl glucoside were made of magnetic fluid . MRF obtained under different environmental conditions, such as magnetic field strength and temperature changes, and its viscosity as well as static observation of the experiment, according to the results to confer the effect of MRF and relationships, and obvious of the MRF on the characteristics of a variety of factors, According to the experimental results confer that with lauryl glucoside more better than oleic acid with good stability of the interface agent and dispersing agent is also added to help the effective magnetic particles dispersed in the liquid contained in the capacity of MRF to enhance the effect of the magnetization, but not all the more , magnetic particle content greater than 20% of the added surfactants and dispersing agent interface requires at least 3 % more than in order to have better results. Experiment also was advised that when the temperature rises to 70 ℃ after, it will disrupts the flow of magnetic fluid (working), and there is the phenomenon of disappearing, so the machine should avoid the use of the overall temperature has increased.

參考文獻


[4] 蘇益弘,磁流變液的磁路分析,碩士論文,台北科技大學製造科技研究所,台北,台灣,2008。
[9] 蔡冠林,磁流變液之強磁性微粒懸浮性分析,碩士論文,台北科技大學製造科技研究所,台北,台灣,2008。
[5] Byung Doo Chin and Jong Hyeok Park. “Rheological properties and dispersion stability of magnetorheological (MR) suspensions”. Rheol Acta , 40:211-219,2001
[7] 趙彥賓,磁流變液體之調製及其分散安定性之研究,碩士論文,成功大學土木工程研究所,台南,台灣,2006。
[8] 徐光宏,磁流變液體之製程研究,碩士論文,成功大學土木工程研究所,台南,台灣,2002。

被引用紀錄


黃冠達(2013)。外滾筒式多磁極磁流變液阻力器之開發與應用〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00408
夏廣德(2013)。奈米流體製備參數對流體內粒子懸浮性之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300985
許嘉哲(2011)。流動式磁流變液阻尼器之研究〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-2801201414582118

延伸閱讀