透過您的圖書館登入
IP:18.119.131.178
  • 學位論文

陶瓷工件積層製造設備自動化之研究

Study on automation of Additive Manufacturing Apparatus for Ceramic Components

指導教授 : 嚴孝全
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


振鏡掃描雖有掃描快速的優點,但是以固定式振鏡掃描為基礎的積層製造設備掃描,由於工作範圍太小而無法應用於製作大型工件,同時製作多種工件的能力亦受到限制;此外,成本昂貴亦是其缺點之ㄧ。因此,本研究以X-Y掃描機構為基礎,針對陶瓷漿料快速原型機自動化控制系統進行設計以及製作,以補振鏡掃描機構之不足。一台快速原型機的硬體架構基本上是由雷射掃描系統與鋪層系統所組成。本研究的雷射掃描系統係以X-Y 平面掃描為基礎,使用一片具有補間功能之PC-Based 4軸控制卡[MC8141P(M)]與一片四軸運動控制卡(PMC2)來操控雷射掃描系統與鋪層系統。利用人機介面的參數設定,經過控制配電盤中的控制卡,傳達指令給鋪層系統及雷射掃描系統的對應裝置,執行所需的運動。 雷射掃描系統是由一台30 W CO2雷射與光路系統,配合兩組伺服馬達推動螺桿所架設出的X-Y掃描機構所構成,而鋪層系統則是以步進馬達推動楔型機構所構成的升降平台與供料裝置、披覆裝置、披覆器清潔裝置所構成。此外,配電控制盤分為電力供應與控制訊號兩大系統,電力系統供應供給動作所需的電力,包括無熔絲開關、電源轉換器等;訊號系統將輸出控制信號傳達給伺服、步進馬達驅動器,並將伺服馬達的Encoder回授到控制卡。 透過Microsoft VisualC++2010撰寫之人機介面程式,實際測試X-Y掃描機構能否精準的掃瞄出所輸入的圖形,並進行3D工件製作,以驗證自動化之功能。 由實驗結果得知,以步進馬達驅動楔型機構升降工作平台,能夠精確地下降固定高度;鋪層系統,搭配所算出的供料量,能夠得到穩定良好的鋪層;雷射掃描系統,除了能夠掃描較大的區域外,亦可得到理想的工件精度;整合上述的雷射掃描系統與鋪層系統,透過人機介面設定製程參數即可全自動地製作出3D工件。

並列摘要


Although galvanometer scanner possesses the advantages of fast scanning, the additive manufacturing equipment with a stationary galvanometer scanner can not build the large components is due to the limited working area and less capability of fabricating different component simultaneously. Furthermore, high cost is one of the shortcomings of the galvanometer scanner. Therefore, the aim of this paper is that designing the automation control system for a ceramic slurry-base rapid prototyping apparatus with the X-Y scanning mechanism to make up the deficiency of the galvanometer scanner. A rapid prototyping apparatus is constituted with a laser scanning system and layer coating system. The laser scanning system is based on the X-Y planar scanning, which uses a PC-Based Control Card [MC8141P (M)] with function of 4-axis interpolation, and a 4- axis motion control card [(PMC2)], to control the laser scanning systems and layer coating systems. By setting the parameters through the human –machine- interface, the commands are transmitted to the corresponding devices of the scanning system and coating system via a control panel to carry out the required motion. The laser scanning system is consisted of a 30 W CO2 laser, an optical system, and a X-Y mechanism driven by linear motion screw with two servo motors. The coating system is consisted of a elevating platform moved with a wedge assembly which is driven by a stepper motor to, a slurry feeding device, a coater and a coater cleaning device. In addition, the control panel includes a power supply system and a control signal panel systems. The power supply system supplies the require power. It includes no fuse breakers, power converters, etc. The control signal system will transmit control signals to the servo motor and stepping motor drivers, and feedback the signals to the servo motor control card. Through the human-machine-interface programmed with Microsoft VisualC + +2010, the X-Y scanning mechanism was verified by 2D patterns scanning. Eventually, 3D components were fabricated to verify the function of automation. The experimental results reveal that the constant lowing distance of the elevating platform can be achieved with the wedge mechanism driven by the stepping motor. By calculating the required slurry volume, the coating systems can obtain layers with good quality. The X-Y scanning mechanism not only can scan a larger area but also can achieve the component with high precision. After integrating the laser scanning systems and coating systems, the 3D parts can be built automatically through setting the parameters with the human-machine-interface.

參考文獻


[6] 楊智翔,以雷射功率在空間上以及時間上的調變提高雷射加工的品質,碩士論文,國立台北科技大學機電整合研究所,臺北,2013
[15] PMC2 使用手冊,興誠科技股份有限公司,台灣2010。
[16] MarkingMate2.7實用篇,興誠科技股份有限公司,台灣2013。
[17] MarkingMate2.7詳述篇,興誠科技股份有限公司,台灣2013。
[18] OCX操作手冊Version2.7,興誠科技股份有限公司,台灣2013。

延伸閱讀