透過您的圖書館登入
IP:18.221.129.19
  • 學位論文

以燃燒法合成固態氧化物燃料電池之新式鈣鈦礦/螢石結構之複合陰極並利用田口法探討材料合成性質表現

Fabricated novel perovskite/fluorite structure composite cathode materials of SOFC by combustion method & factor analysis with Taguchi Method

指導教授 : 余炳盛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在能源逐漸耗竭的背景下,綠色能源逐漸受到重視,其中固態氧化物燃料電池 (SOFC) 為極具潛力的綠色能源技術,傳統SOFC陰極材料 (LSM) 及電解質(YSZ) 材料在高溫時具有高導電性、高催化活性及熱穩定性,但高溫工作環境限制了材料特性。然而隨著溫度的降低,陰極材料的離子傳導性也隨之降低,陰極和電解質的阻抗增加。降低陰極阻抗主要方法使用離子電子混合導體例如 La0.6Sr0.4Co0.2Fe0.8O3-δ,或採用複合陰極電解質/陰極等。本研究選用新式八元鈣鈦礦結構之陰極材料,以田口法規劃利用燃燒合成法一次製備之 SOFC 複合陰極材料 ( LaSrBaSmFeMnCoCuO3-δ/Gd-Sm-Ce O3-δ),藉由田口分析,求得最佳晶相純度及導電能力之鈣鈦礦/螢石結構SOFC複合陰極材料。

並列摘要


In the gradual depletion of energy background, green energy increasing attention, wherein the solid oxide fuel cell (SOFC) is great potential for green energy technology. The traditional SOFC cathode material (LSM) and electrolyte (YSZ) material at high temperatures with high conductivity, high catalytic activity and thermal stability, but the high temperature limit of the material properties of the work environment. However, as the temperature decreases, the ion conductivity of the cathode material is also reduced, increasing the impedance of the cathode and the electrolyte. The main way to reduce the cathode impedance using the ion electron mixed conductors such La0.6Sr0.4Co0.2Fe0.8O3-δ, or the use of composite cathode electrolyte / cathode, etc.In this study we use succeed to synthesize a novel SOFC eight element composite cathode by Glycine-Nitrate process ( LaSrBaSmFeMnCoCuO3-δ/Gd-Sm-CeO2-δ), Analysis by Taguchi, Obtain the best crystal phase purity and conductivity of perovskite / fluorite structure SOFC composite cathode material.

參考文獻


1. D. J. L. Brett, A. Atkinson, N. P. Brandon and S. J. Skinner, ‘‘Intermediate temperature solid oxide fuel cells ’’, Chemical Society Reviews (37) (2008) pp.1568-1578.
2. J. W. Fergus, ‘‘Metallic interconnects for solid oxide fuel cells’’, Materials Science and Engineering A 397 (2005) pp.271–283.
3. E. Ivers-Tiffee, A. Weber, D. Herbstritt, ‘‘Materials and technologies for SOFC-components ’’, Journal of the European Ceramic Society 21 (2001) pp.1805-1811.
4. S. B. Adler, ‘‘Factors governing oxygen reduction in solid oxide fuel cell cathodes’’, Chemical Reviews 104 (10) (2004) pp.4791-4843.
5. B. C. H. Steele, ‘‘Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃’’, Solid State Ionics 129 (2000) pp.95–110.

延伸閱讀