透過您的圖書館登入
IP:3.134.102.182
  • 學位論文

利用鐵鎳銅合金製備大面積石墨層之研究

Synthesis of Large-Area Graphite Layer from Fe-Ni-Cu Alloy

指導教授 : 徐開鴻

摘要


本研究嘗試以鐵鎳銅合金之液相,催化石墨粉粒溶解後再析出大面積石墨層。以真空爐最高限制溫度1350 ℃加熱並持溫5小時,透過鐵鎳銅合金本身的配比變化以及所使用之石墨粉的配比變化,試圖獲得多樣的樣品形貌,來理解鐵鎳銅合金與碳彼此間的交互作用。另外選取1.5C-Fe58.45Ni25.05Cu15(wt%)的樣品以持溫時間變化嘗試回推當時可能的合成狀態,建構出本研究可能的成長機制。 根據研究結果得知,銅元素在本研究中扮演控制碳元素析出之重要角色,少量的存在即可大幅提升石墨層之成核點數目以及成長速率。使得本研究在寬廣的配比範圍內(碳含量1.5 wt%至2.5 wt%之間,以及銅含量1.0wt%至30 wt%之間),可得到厚層大面積石墨層以及薄層大面積石墨層。在所有配比中,固定碳為1.5 wt%以及銅15 wt%、碳為3 wt%以及銅為5 wt%,將可得到最連續且緻密均勻覆蓋於塊錠表面之厚層石墨層。而在碳為1.5wt%以及銅1 wt%配比下,透過拉曼光譜分析可找到石墨烯之訊號。 藉由持溫時間變化回推石墨層的成長機制,發現皺褶的粗細、排列外型的規則與否將受到生長階段之影響。此外本研究所合成連續性佳且緻密性最佳之配比的厚層大面積石墨層樣品,並且可透過硝酸進行蝕刻分離,得到完整之大面積石墨層,將有利於進行未來應用的發展。

並列摘要


This research was using the liquid phase of Fe-Ni-Cu alloy to dissolve graphite powder; precipitate then synthesis to a large-area graphite layer on the surface of the alloy. The research used a sintering vacuum at 1350 ℃ for up to 5 hours. To observe the interaction of Fe-Ni-Cu with carbon at different isothermal times, using samples of 1.5C-Fe58.45Ni25.05Cu15 (wt%), lead to the investigation of the graphite layer growth mechanism. According to this research, copper had played an important role of controlling the segregation of carbon. The growth rate and nucleation had been elevated dramatically due to the existence of copper at a small amount. The content distribution range (carbon content 1.5 wt% to 2.5 wt%, and the copper content 1.0 wt% to 30 wt%) of carbon and copper could lead to the ideal result expected which is the large-area graphite layer. The outcome would be at its best quality at this specific allocation, which was carbon content 1.5 wt% and copper content at 15 wt%. We could find graphene signal through Raman analysis at 1.5 wt% carbon and 1 wt% copper. Due to the change of isothermal times, the mechanism of graphite layer growth could be deduced. The variation of growth steps could influence graphite layer’s wrinkle level and its appearance. Under this content of carbon and copper (1.5C-Fe58.45Ni25.05Cu15), which etched by nitric acid, could separate into a large-area graphite layer from Fe-Ni-Cu alloy. The graphite layer sample would be a beneficial usage to future development.

參考文獻


[71] 吳亭瑩,銅鎳合金系統製備大面積石墨膜之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2011。
[72] 許倍誌,鐵鎳合金系統製備大面積石墨膜之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2011。
[2] Q. F. Sun and X. C. Xie, “Quantum transport through a grapheme nanoribbon–superconductor junction” J. Phys.:Condens. Matter, vol.21, 2009. pp.344204-1-9.
[3] J. H. Chen, C. Jang, S. Xiao, M. I shigami, M. S. Fuhrer, “ Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2”, Nature Nanotechnology, vol.3, 2008, pp.206-209.
[4] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano Lett., vol.9, 2009, pp. 1752–1758.

被引用紀錄


Hsu, C. J. (2013). 以化學溶液法製備摻雜氮及磷之石墨薄膜之性質研究 [master's thesis, National Taipei University of Technology]. Airiti Library. https://doi.org/10.6841/NTUT.2013.00716
蔡易霖(2012)。利用鐵鎳銅錳合金製備大面積石墨烯之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00253

延伸閱讀