透過您的圖書館登入
IP:3.145.111.125
  • 學位論文

以溶膠凝膠法製備摻雜金屬離子之Li4Ti5O12鋰離子電池負極材料

The Preparation of Lithium-ion Battery of Metal Ions Doped Li4Ti5O12 Anode Material by Sol-gel Method

指導教授 : 蔡德華

摘要


對於鋰離子電池之負極材料進行研究,目前鋰離子電池廣泛採用的石墨類碳負極材料不可逆容量損失較大,而且存在安全性問題。Li4Ti5O12負極材料在Li離子嵌入及脫出的過程中,晶體體積幾乎不會發生變化,此材料具有循環壽命長及安全性高等特點,但過低的導電性及鋰離子擴散速率抑制了其實用性。   本研究以溶膠凝膠法合成材料Li4Ti5O12,首先改變煅燒溫度、煅燒升溫速率、煅燒維持時間進行合成,尋求製備出材料結晶性最佳之條件;第二步以同比例不同金屬離子摻雜在Li4Ti5O12上,進行電化學性能分析。   經由實驗結果可以得知,鍛燒溫度為800℃,鍛燒時間為14小時,鍛燒速率為4℃/min,擁有較佳的結晶性,在0.1 C及10 C放電速率下,未摻雜之Li4Ti5O12電容量可達152.2 mAh/g及58 mAh/g,摻雜鋁之材料為157 mAh/g及79 mAh/g,摻雜鑭之材料為160.2 mAh/g及112.6 mAh/g,摻雜鈰的材料165.6 mAh/g及122.8 mAh/g。

並列摘要


The anode materials are usually carbon in commercial lithium ion batteries. However, the main drawback for carbonaceous materials has a large irreversible capacity loss , and there is still some safty problem. The crystal size of Li4Ti5O12 does not change during charge and discharge process. Therefore,this material is call zero strain material which has properties of long life and safety. It has the problem of poor rate capability due to its low electronic conductivity.   In studies, we tried to use sol-gel method to synthesize Li4Ti5O12 and searched for optimal synthetic process. First, we change the calcination temperature, heating rate of calcination,and calcination duration in order to synthesis, and find the best conditions. Second, the same proportion of different metal ion doped on Li4Ti5O12, and electrochemical performance analysis.   The result shows that calcination temperature must reach 800℃ maintaining 14 hours and the rate is 4℃/min to keep better crystallinity. The discharge capacity of Li4Ti5O12 is 152.2 mAh/g and 58mAh/g at 0.1C and 10C. The discharge capacity of Li4Al0.05Ti4.95O12 is 157 mAh/g and 79 mAh/g at 0.1 C and 10 C. And the discharge capacity of Li4La0.05Ti4.95O12 is 160.2 mAh/g and 112.6 mAh/g at 0.1 C and 10 C. In addition the discharge capacity of Li4Ce0.05Ti4.95O12 is 165.6 mAh/g and 122.8 mAh/g at 0.1 C and 10 C.

參考文獻


[16] 范己文,合成(a)鋰電池含特殊氟素電解質鹽類、(b)有機離子液體及(c)矽膠移除劑,碩士論文,2006
[2] M. Hu, Y. Jiang and M. Yan, "High rate Li4Ti5O12–Fe2O3 and Li4Ti5O12–CuO composite anodes for advanced lithium ion batteries", Journal of Alloys and Compounds, 603, p.202-206 (2014)
[3] Bruno Scrosati, Jurgen Garche, "Lithium Batteries: Status,Prospects and Future", Journal of Power Source, 195(9), pp.2419~2430 (2010)
[4] G. Q. Liu, L. Wen, G. Y. Liu, Q. Y. Wu, H. Z. Luo, B. Y. Ma and Y. W. Tian, "Synthesis and electrochemical properties of Li4Ti5O12", Journal of Alloys and Compounds, 509(22), p.6427-6432 (2011)
[5] N. Zhang, Z. Liu, T. Yang, C. Liao, Z. Wang and K. Sun, "Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries", Electrochemistry Communications, 13(6), p.654-656 (2011)

延伸閱讀