透過您的圖書館登入
IP:3.12.71.237
  • 學位論文

陶瓷工件之雷射燒結及掺滲

Laser Sintering and Infiltration of Ceramic Work Piece

指導教授 : 湯華興

摘要


本文研究陶瓷工件之雷射燒結及掺滲製程,以耐火矽酸鋯陶瓷粉末與具有黏結性的奈米火山黏土添加水份後調配成漿料狀材料,進行鋪層乾燥後能像陶瓷雷射熔結法一樣形成固體支撐;配合硬體設備將漿料以20μm鋪層厚度鋪設於製程平台,乾燥後以不同功率的CO2雷射掃描後再以電子顯微鏡(SEM)觀察材料組織,選擇最佳參數製作2.5D試片進行掺滲製程,再檢測各製程試片之強度與粗糙度分析。 實驗部份分為兩個階段,第一為陶瓷雷射燒結製程實驗,研究製程材料在雷射製程後燒結相關課題;第二為掺滲試驗,探討以玻璃材料及高分子材料為掺滲強化材料對陶瓷試片機械性質的影響;實驗結果顯示製程材料水30g、矽酸鋯50g、奈米火山黏土58g的混合漿料,在鋪層、沉澱、CO2雷射掃描實驗中可得到最佳結果。以雷射功率14瓦、速度1000 mm/s、線與面重疊率50%、鋪層厚度20μm,製作150層的長形試片45×4×3mm,掺滲結果以鑭玻璃所得抗彎強度最大,數值為44.17 MPa,但其粗糙度卻為最高,以中心線平均粗度法Ra數值在X軸量測為11.65μm、Y軸量測為12.17μm、Z軸量測為13.2μm,以掺滲光聚合樹脂掺滲後的試片有較小粗糙度,其Ra數值在X軸量測為7.87μm、Y軸量測為8.04μm、Z軸量測為7.63μm,其抗彎強度為28.33 MPa。

並列摘要


This paper is to study the laser sintering and infiltrating process of ceramic parts. ZrSiO4 ceramic powder, nano-volcanic clay and water were made up to be slurry, and then paving and drying to establish a solid support as ceramic laser fusion process. Paving and drying layer with thickness of 20 μm on platform, specimens were scanned by CO2 laser with different power, and then observed the material structure by SEM. 2.5D specimens for infiltration were made by selecting the optimum parameter, and then inspect the strength and analysis the roughness of the specimens. The experiments were divided to two steps; the first was ceramic laser sintering process experiment, which studied the material after laser scanning sintering; the second was infiltration experiment, which studied the influences of mechanical properties by using glass and polymer as infiltrating material. According to the results of experiment, the slurry made up with water 30g, ZrSiO4 50g and nano-colcanic clay 58g, the best result was obtained in layer paving, sedimentation and laser scanning experiments. By using laser power 14W, scanning speed 1000 mm/s, line and planar overlapping rate 50% and 150 layers with thickness 20 μm to make specimen of 45 x 4 x 3 mm, the highest bending strength was obtained by infiltrating lanthanum glass; the value was 44.17 Mpa; however, the roughness was also the highest. Ra was 11.65 μm along the X axis, 12.17 μm along the Y axis and 13.2 μm along the Z axis. One the other hand, infiltrating with polymer, the specimen had the smaller roughness; Ra was 7.87 μm along the X axis, 8.04 μm along the Y axis and 7.63 μm along the Z axis; the bending strength was 28.33 Mpa.

參考文獻


[25] 林川瑜,再生混凝土中添加奈米黏土及高爐石粉性質之研究,碩士論文,中
[1] Kochan A., “Rapid prototyping trend” Rapid Prototyping Journal, vol. 3, no. 4,
1997, pp. 150-152.
[2] China C.K., and Leong K.F., “Rapid Prototyping in Singapore: 1988 to 1997”
Rapid Prototyping Journal, UK, vol. 3, no. 3, 1997, pp. 116-119.

被引用紀錄


陳世傑(2010)。溶劑型漿料光成型法之鋪層系統開發〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2010.00302
蔡佳佑(2009)。陶瓷雷射燒結法之生薄層塊之密度均勻性研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00432
謝立祥(2009)。以陶瓷雷射燒結法製作工件之精度及小型化〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00429
蘇紘建(2008)。陶瓷雷射燒結快速原型技術之強度提昇及生薄層塊去除研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2008.00462
黃國恩(2007)。以塑膠漿料為基材之快速原型系統開發〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2007.00341

延伸閱讀