透過您的圖書館登入
IP:3.12.36.30
  • 學位論文

2-胺基丙二醇改質醚型聚胺酯/多壁奈米碳管複合材料之製備、鑑定和形狀記憶性

Synthesis, Characterization, and Shape Memory Property of the Serinol-modified Polyurethane(Ether-typed)/Multi-walled Carbon Nanotube Composites

指導教授 : 王賢達
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是採用二段式聚合法合成改質醚型聚胺酯(PU)。首先是將聚氧四亞基二醇(PTMO,Mw=2900)和4,4’-二苯甲烷二異氰酸鹽(MDI)以莫爾比1:3之比例先形成預聚物,再加入含有BOC保護基的2-胺基丙二醇(Serinol)和1,4-丁二醇(1,4-BD)反應得到改質PU,再利用三氟醋酸除去PU上活化基,即可得到活化PU。市售奈米碳管(MWNTs)以570℃煅燒,經氫氟酸與硝酸純化,即可得到純化奈米碳管(HMWNTs),再以硫酸:硝酸(體積比=3:1)酸化處理,即可得到酸化奈米碳管(AMWNTs),最後加入亞硫醯氯反應形成醯氯化多壁奈米碳管(ClMWNTs)。活化PU與ClMWNTs反應即可得到化學鍵結之複合材料;活化PU與AMWNTs混摻即可得到物理性結合之複合材料。   經由FTIR及NMR光譜結果顯示奈米碳管有成功接枝在改質PU上。表面電阻結果顯示,複合材料中奈米碳管的添加,可以有效降低其表面電阻,最低可降至3.92E+05 (Ω/cm2)。化學鍵結之複合材料正反面表面電阻差異較小,有良好的分散性。由DSC分析結果顯示複合材料之Tg、Tm及結晶性皆隨著奈米碳管之添加量增加而增加,4PU5的Tg可達-57.3℃、Tm為23.2℃與結晶面積為31.06(J/g)。   TGA數據顯示,化學鍵結之複合材料的熱裂解溫度(Td為95%質量殘存),隨著碳管含量增加而上升,其中以4PU5的361.4℃為最高。由拉力試驗結果顯示拉伸強度及楊氏模數會隨奈米碳管增加而有上升趨勢,4PU5分別為13.5MPa及10.1MPa,但斷裂延伸率反而下降。由記憶回復性測試顯示,4PU5之形狀保持率可達81.3%,且形狀恢復率可高達97.5%。

並列摘要


The poly(tetramethylene oxide) (PTMO, M.W. = 2900) and the 4,4 '- diphenylmethane diisocyanate (MDI) with a molar ratio of 1:3 were reacted at 70 oC in nitrogen atmosphere to form the prepolymer, and the product was subsequently chain-extended with the 1,4 - butanediol (1,4-BD) and the N-BOC-protected serinol (N-BOC-serinol) to obtain the modified polyurethane (PU). The N-BOC groups were deprotected from the synthesized PU using the trifluoroacetic acid to obtain the NH2- functionalized PU. The multi-walled carbon nanotubes (MWNTs) were calcined at 570 oC to remove the amorphous carbon, and then acidified (H2SO4/HNO3 at 3/1 vol.) at 60 oC to get the COOH-functionalized MWNTs (AMWNTs). The AMWNTs were chloroacylated (SOCl2) at 70 oC under N2 to produce the COCl-functionalized MWNTs (ClMWNTs). The NH2- functionalized PU was either chemically reacted with the ClMWNTs or physically mixed with AMWNTs to yield the composite, PU/MWNTs, or PU/ AMWNTs, respectively.   The Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectra identified the chemical structures of the PU/MWNTs and PU/ AMWNTs composites. The temperature for 95% mass remained (Td) obtained from the thermogravimetric analysis (TGA), the glass transition temperature (Tg), the melting temperature (Tm), and the crystallinity measured by the differential scanning calorimetry (DSC), the tensile strength and the Young’s modulus collected from tensile tester all increased with an increase in the amount of the MWNTs or the AMWNTs in the composite. The surface resistance of the composite decreased due to the addition of the MWNTs or the AMWNTs. A value of 3.92E +05 (Ω/cm2) reached for the composite with a 5% MWNTs loading.   The shape memory tests showed that the 4PU5 possessed the shape retention, 81.3% and the shape recovery, 97.5%.

參考文獻


[1]S.Iijima, “Helical microtubules of graphitic carbon” Nature, Vol.354, 1991, pp. 56-58.
[2]R. H. Baughman, A. A. Zakhidov and W. A. Heer, “Carbon nanotubes-the route toward application” Science, vol. 297, 2002, pp. 787-792.
[5]D. J. David and H. B. Staley, “Analytical Chemistry of The Polyurethanes Part III”, New York, Wiley-Interscience, 1969.
[6]黃凌威,紫外光可硬化聚胺酯丙烯酸樹脂之製備與其應用於高透明防破裂玻璃保護之研究,碩士論文,國立台灣大學化學工程學研究所,臺北市,2009.
[7]潘彥曲,靜電紡絲製備醚型聚胺酯/改質奈米碳管複合材料及性質鑑定,碩士論文,臺北科技大學有機高分子所,臺北市,2013.

延伸閱讀