透過您的圖書館登入
IP:18.224.0.25
  • 學位論文

鑽石材料之熱氧化行為及其光電應用研究

Oxidation Behaviors and Photoelectronic Applications of Diamond Materials

指導教授 : 王錫福 宋健民

摘要


本論文以鑽石材料之熱氧化行為特性及其光電應用作為研究中心,研究子題分五部份,分別為(1)鑽石單晶與薄膜之高溫拉曼研究、(2)化學氣相沉積(CVD)鑽石薄膜之高溫氧化行為研究、(3)奈米鑽石薄膜之高溫氧化行為研究、(4)含硼無晶類鑽碳薄膜之製備研究分析及(5)無晶類鑽碳薄膜於電激發光元件之陰極應用與特性分析,分別進行實驗分析及討論。其目的為了將鑽石薄膜材料之高溫氧化特性,及類鑽碳薄膜之半導體與光電之應用,藉由搭配DTA/TGA、拉曼光譜、XPS、SEM及霍爾效應(Hall effect)等檢測分析進行研究討論,使其鑽石薄膜材料之高溫氧化特性予以被了解,並可應用於鑽石薄膜材料之高溫製程、加工及後處理之特性討論,以提昇鑽石薄膜材料之工業應用之良率與特性發揮。亦提昇類鑽碳薄膜之電性與半導體性質,使其成功地應用於半導體元件、薄膜太陽能電池、電激發光元件等光電半導體元件之應用。 鑽石材料於高溫氧化及穩定性之研究部份,以熱燈絲化學氣相沉積(HF-CVD)方式製備多晶鑽石薄膜和奈米鑽石薄膜,並以單晶鑽石與石墨進行實驗對照與比較分析。於高溫拉曼之實驗結果顯示,鑽石材料隨著溫度從室溫增加到1000oC,其拉曼光譜之sp3鍵結訊號由1332 cm-1偏移至1310 cm-1,這是由於溫度改變了其電子之振動頻率所致。以熱差與熱重分析儀測量鑽石材料於空氣和氮氣氣氛下加熱至1300oC之高溫反應。其結果顯示,奈米鑽石薄膜於空氣中開始氧化溫度約為620oC,且分別低於在700oC和900oC所沉積之多晶鑽石薄膜(氧化溫度分別為629oC和650oC)和單晶鑽石(約674oC)。並利用熱分析進行鑽石材料之活化能計算,其結果皆顯示奈米鑽石薄膜具有較低之氧化溫度與較低之活化能,其可能原因在於奈米鑽石薄膜相對於多晶鑽石薄膜和單晶鑽石,其含有大量的非鑽石之碳相和晶界所導致。而拉曼光譜和XPS之結果皆一致顯示,於高溫氧化作用下,其薄膜內部之sp2鍵結比例皆顯著降低。然而於氮氣氣氛下加熱至1300oC,奈米和多晶鑽石薄膜以及單晶鑽石皆沒有檢測出氧化反應與重量損失之現象。 類鑽碳(DLC)薄膜於電子和光電之應用研究部分,以射頻磁控濺鍍法成功地製備含硼類鑽碳(B-DLC)薄膜,其含硼類鑽碳薄膜具有良好之p型半導體特性,當硼含量 ≥ 2.51 at.%,其薄膜的半導體特性表現由n型轉向形成p型半導體。其類鑽碳薄膜於硼含量在5.91 at.%時,表現出最大載子濃度1.2×1019 cm-3,而其載子遷移率為0.4 cm2/V•s,具有相當良好之半導體特性。而應用於光電元件之類鑽碳薄膜,則應用電弧放電(Arc PVD)方式沉積,製備導電類鑽碳薄膜作為無機交流電激發光元件(EL)之陰極層。其測試結果顯示,使用導電類鑽碳薄膜製作之電激發光元件,相較於使用鋁(Al)和摻雜鉻(Cr)之類鑽碳薄膜之陰極,其具有較優異的電激發光亮度和較緩慢之亮度衰減特性。

並列摘要


This study focuses on five parts of the diamond and diamond-like carbon (DLC) materials, including (1) high-temperature Raman study of the diamond crystal and diamond film, (2) high-temperature oxidation behaviors of CVD diamond films, (3) high-temperature oxidation behaviors of the nanocrystalline diamond film, (4) characterization of boron-doped diamond-like carbon prepared by R.F. sputtering and (5) the characteristics of inorganic electroluminescent devices with an amorphous diamond film as cathode material. These materials have been investigated and studied through DTA/TGA, thermal analysis, temperature in-situ Raman analysis, XPS analysis and Hall effect system. Through these analyses more characteristics about oxidation can be known, which can upgrade semiconductor and photoelectronic applications for diamond and DLC thin films. The diamond materials would be used in high-temperature, cutting tool, semiconductor, solar cell, electroluminescent devices and photoelectronic applications. In the high temperature oxidation and stability study of polycrystalline diamond films and nanocrystalline diamond film, hot filament chemical vapor deposition (HF-CVD) was prepared. The experiment also compared with the single crystal diamond and graphite. The results of the Raman analysis indicate that the first order Raman band of diamond materials shift from 1332 cm-1 to 1310 cm-1 as the temperature increased from room temperature to 1000

參考文獻


[1] J.E. Field, The Properties of Natural and Synthetic Diamond, Academic Press, London, 1992.
[3] S.F. Wang, Y.F. Hsu, J.C. Pu, J.C. Sung, and L.G. Hwa, "Determination of Acoustic Wave Velocities and Elastic Properties for Diamond and Hard Materials Mater," Chem. Phys. 85 (2004) 432.
[4] S.G.Wang, Q. Zhang, S.F. Yoon, J. Ahn, Q.Wang, D.J.Wang, J.Q. Li, and S.Z. Shanyong, "Electron Field Emission Enhancement Effects of Nano-Diamond Films," Surf. Coat. Technol. 167 (2003) 143.
[5] M.D. Whitfield, B. Audic, C.M. Flannery, L.P. Kehoe, G.M. Crean, C. Johnston, P.R. Chalker, and R.B. Jackman, "Polycrystalline Diamond Films for Acoustic Wave Devices," Diamond Relat. Mater. 7 (1998) 533.
[7] G.S. Ristic, Z.D. Bogdanov, S. Zec, N. Romcevic, Z.D. Mitrovic and S.S. Miljanic, "Effect of the substrate material on diamond CVD coating properties", Mater. Chem. Phys. 80 (2003) 529.

延伸閱讀